Question Video: Comparaison de la courbe d’une fonction avec sa réciproque | Nagwa Question Video: Comparaison de la courbe d’une fonction avec sa réciproque | Nagwa

نقاط المكافآت

اكسب نقاطًا من خلال تفاعلك مع المُدرس أثناء الحصة وإجابتك عن الأسئلة، واستخدمها لاحقًا للحصول على خصم عند شراء حصص أخرى.

Question Video: Comparaison de la courbe d’une fonction avec sa réciproque Mathématiques • Second Year of Secondary School

Si on a tracé la fonction 𝑓(𝑥) et sa fonction réciproque 𝑓⁻¹(𝑥) sur le même graphique, alors laquelle des affirmations suivantes doit être vraie ? [A] Il y aurait une symétrie par rapport à la droite d’équation 𝑦 = 𝑥. [B] Il y aurait une symétrie par rapport à l’axe des 𝑥. [C] Il y aurait une symétrie par rapport à l’origine. [D] Il y aurait une symétrie par rapport à l’axe des 𝑦. [E] Les deux graphiques seraient les mêmes.

03:12

Video Transcript

Si on a tracé la fonction 𝑓 de 𝑥 et sa fonction réciproque, la réciproque de 𝑓 de 𝑥, sur le même graphique, alors laquelle des affirmations suivantes doit être vraie ? (A) Il y aurait une symétrie par rapport à la droite d’équation 𝑦 est égal à 𝑥. (B) Il y aurait une symétrie par rapport à l’axe des 𝑥. (C) Il y aurait une symétrie par rapport à l’origine. (D) Il y aurait une symétrie par rapport à l’axe des 𝑦. (E) Les deux graphiques seraient les mêmes.

Pour répondre à cette question, rappelons-nous les liens entre la fonction 𝑓 de 𝑥 et sa réciproque. Supposons que nous ayons la fonction 𝑓 dont la réciproque est donnée par 𝑓 avec un exposant moins un. 𝑓 moins un de 𝑓 de 𝑥 est simplement égal à 𝑥 pour tout 𝑥 dans l’ensemble de définition de la fonction. En d’autres termes, la réciproque de la fonction annule en fait la fonction d’origine. Il existe un certain nombre de techniques que nous pouvons utiliser pour trouver la réciproque d’une fonction. Il est quelque peu en dehors du cadre de cette vidéo de démontrer l’une de celles-ci. Cependant, nous allons voir un exemple très rapide.

Supposons que nous ayons la fonction 𝑓 de 𝑥 égale deux 𝑥. Cette fonction prend toutes les valeurs dans l’ensemble de définition et les multiplie par deux. La réciproque de 𝑓 est la fonction qui annule ce processus. Il s’agit donc de la fonction qui prend les valeurs et les divise par deux. La réciproque de 𝑓, dans ce cas, est alors 𝑥 divisé par deux. Nous allons démontrer ce qui se passe graphiquement en traçant chacune de celles-ci dans le premier quadrant du plan cartésien. Commençons par 𝑦 est égal à 𝑓 de 𝑥, la courbe de 𝑦 est égale à deux 𝑥. Cette courbe a une intersection avec l’axe des 𝑦 en zéro. Ainsi, elle passe par l’origine ou le point zéro, zéro. De plus, nous avons un coefficient directeur de deux. Cela signifie qu’elle passera par les points de coordonnées un, deux et deux, quatre.

De même, la courbe de la réciproque 𝑦 égale 𝑥 sur deux passe également par l’origine. Cette fois, cependant, elle a un coefficient directeur de un-demi. Elle passe donc par le point deux, un et le point quatre, deux. Si nous regardons très attentivement, nous pouvons voir que nous pouvons transformer l’un ou l’autre de ces graphiques vers l’autre par symétrie axiale de la droite d’équation 𝑦 égale à 𝑥. Cela a beaucoup de sens, puisque nous échangeons essentiellement les valeurs 𝑥 et 𝑦 de chaque coordonnée. Ainsi, le point de coordonnées un, deux correspond à deux, un et vice versa. De même, le point de coordonnées deux, quatre correspond à quatre, deux et vice versa.

Cela signifie que si nous traçons la fonction 𝑓 de 𝑥 et sa réciproque sur le même graphique, nous savons qu’elles sont symétriques par rapport à la droite d’équation 𝑦 égale 𝑥. Ainsi la réponse est (A) il y aurait une symétrie par rapport à la droite d’équation 𝑦 est égal à 𝑥.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية