Question Video: Simplifier la somme de deux fonctions rationnelles et déterminer son ensemble de définition | Nagwa Question Video: Simplifier la somme de deux fonctions rationnelles et déterminer son ensemble de définition | Nagwa

Reward Points

You earn points by engaging in sessions or answering questions. These points will give you a discount next time you pay for a class.

Question Video: Simplifier la somme de deux fonctions rationnelles et déterminer son ensemble de définition Mathématiques • Third Year of Preparatory School

Simplifiez la fonction d’expression 𝑛 (𝑥) = (2 / (𝑥 - 8)) + (4 / (8 - 𝑥)) et déterminez son ensemble de définition.

01:38

Video Transcript

Simplifiez la fonction d’expression 𝑛 de 𝑥 égal deux sur 𝑥 moins huit plus quatre sur huit moins 𝑥 et déterminez son ensemble de définition.

En commençant par cette fonction, afin d’additionner des expressions fractionnaires, nous avons besoin d’un dénominateur commun. Peut-on multiplier huit moins 𝑥 par un nombre de sorte qu’il devienne 𝑥 moins huit ?

Réfléchissez-y comme cela. Nous avons actuellement plus huit et moins 𝑥. Et nous voulons avoir plus 𝑥 et moins huit. Si nous multiplions huit moins 𝑥 par moins un, cela devient 𝑥 moins huit. Et pour changer cela, nous devons multiplier quatre sur huit moins 𝑥 par moins un sur moins un. Deux sur 𝑥 moins huit ne change pas. Et nous allons lui ajouter moins quatre sur 𝑥 moins huit. Maintenant que les expressions fractionnaires ont un dénominateur commun, on peut soustraire. Deux moins quatre égal moins deux. Et le dénominateur reste égal à 𝑥 moins huit.

L’expression 𝑛 de 𝑥 de la fonction peut donc s’écrire moins deux sur 𝑥 moins huit. L’ensemble de définition représente l’ensemble des valeurs que 𝑥 peut prendre. Et nous savons que ce dénominateur, 𝑥 moins huit, ne peut pas être égal à zéro parce que nous ne pouvons tout simplement pas diviser par zéro. 𝑥 moins huit ne peut pas être égal à zéro. Nous ajoutons donc huit aux deux membres. Et cela nous permet d’obtenir que 𝑥 ne peut pas être égal à huit. Huit ne fait pas partie de l’ensemble de définition. On peut par conséquent conclure que l’ensemble de définition est égal à l’ensemble des nombres réels sauf huit.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy