Video Transcript
Les variations de la distance parcourue par un objet au cours d’un intervalle de temps sont indiquées sur le graphique. Le graphique est divisé en trois sections, I, II et III. Dans quelle section du graphique la vitesse de l’objet est-elle la plus grande ? A) I, B) II, C) III ou D) La vitesse est la même dans toutes les sections.
Donc, comme vous pouvez le voir, nous avons un graphique avec le temps sur l’axe horizontal et la distance parcourue par un objet sur l’axe vertical. Et la courbe bleue nous montre comment la distance qu’un objet a parcouru évolue avec le temps. La question nous demande d’identifier la section du graphique qui montre l’objet se déplaçant à la plus grande vitesse. Donc, un défi dans cette question est de comprendre comment nous pouvons obtenir la vitesse d’un objet si on nous donne simplement un graphique des distances parcourues en fonction du temps.
Il y a une équation importante qui nous aidera à répondre à cette question. 𝑠 égal à 𝑑 sur 𝑡 ; la vitesse est égale à la distance divisée par le temps. Nous pouvons penser à cette équation comme étant la définition de la vitesse. Si un objet parcourt une certaine distance 𝑑 en une certaine période de temps 𝑡, diviser la distance par le temps nécessaire pour parcourir cette distance nous donnera la vitesse 𝑠.
Alors réfléchissons à la façon dont nous pourrions appliquer cela à la section I du graphique. Pour la première partie du parcours de l’objet, il commence à cette distance et se déplace vers cette distance. En d’autres termes, il parcourt une distance égale à la différence entre ces deux points. Et le temps nécessaire pour parcourir cette distance est donné par la différence de ces deux points. Donc, cette distance verticale sur notre graphique est la distance parcourue par l’objet. Et la distance horizontale indiquée sur le graphique est le temps 𝑡 que l’objet a pris pour parcourir cette distance.
Malheureusement, le graphique qui nous a été donné ne contient pas de mesures de distance ou de temps, ce qui signifie qu’il n’y a aucun moyen de déterminer la distance parcourue par l’objet dans la section I, ni le temps nécessaire pour parcourir cette distance. En d’autres termes, comme nous ne pouvons pas trouver de valeurs pour 𝑑 ou 𝑡, nous ne pouvons pas déterminer quelle est la vitesse 𝑠. Mais même si nous n’avons aucune valeur réelle à insérer dans cette équation, cela nous dit toujours quelque chose d’important sur la façon dont la vitesse d’un objet affecte son graphique distance-temps.
Par exemple, considérons le graphique distance-temps pour un objet qui parcourt une très grande distance en très peu de temps. Cela pourrait ressembler à quelque chose comme ça. Maintenant, dans ce cas, nous pourrions calculer la vitesse en prenant la distance et en la divisant par le temps. La distance est très grande et la période de temps est très petite. Ainsi, lorsque nous divisons la distance par le temps, nous divisons un grand nombre par un petit nombre, ce qui nous donne un résultat important. En d’autres termes, nous dirions que cet objet se déplace à grande vitesse. Comparons cela à un objet qui parcourt une très courte distance en une très longue période.
Le graphique distance-temps pour un tel objet ressemblerait davantage à ceci. Si nous calculions la vitesse en divisant la distance par le temps, nous diviserions un très petit nombre par un grand nombre, ce qui nous donnerait un petit résultat. Nous dirions donc que cet objet se déplace à faible vitesse. Ce que nous constatons, c’est que plus un objet se déplace rapidement, plus son graphique distance-temps devient raide. Cela reste vrai même si l’objet se déplace dans le sens opposé. Donc, dans ces graphiques, la distance diminue avec le temps.
La courbe la plus raide montre toujours une plus grande variation de distance sur une courte période. Nous savons donc que l’objet représenté sur ce graphique se déplace à une vitesse supérieure à l’objet représenté sur ce graphique. Nous pouvons résumer cela avec la règle suivante. Plus la pente d’un graphique distance-temps est raide, plus la vitesse est élevée. Ainsi, afin d’établir quelle section de notre graphique montre l’objet se déplaçant le plus rapidement, il suffit de déterminer lequel de ces trois segments de droite a la pente la plus raide.
Nous pouvons voir que la section II du graphique a la pente la plus douce. La section III est un peu plus raide que cela. Et le graphique est le plus raide dans la section I, ce qui signifie que la bonne réponse à cette question est A. La vitesse de l’objet est la plus grande dans la section I.