Lesson Worksheet: Domain of Rational Functions Mathematics

In this worksheet, we will practice identifying the domain of a rational function and the common domain of two or more rational functions.

Q1:

Identify the domain of 𝑛(𝑥)=9𝑥+83𝑥+2.

  • A23
  • B23
  • C32
  • D32
  • E89,23

Q2:

For which values of 𝑥 is the function 𝑛(𝑥)=𝑥25𝑥12𝑥+32 not defined?

  • A{4,8}
  • B{8,4}
  • C{5,5}
  • D{4,8}
  • E{5,5}

Q3:

What is the domain of the function 𝑦=𝑥1𝑥+1?

  • A{1}
  • B, the positive real numbers
  • C
  • D{1}
  • E{1,1}

Q4:

Find the domain of the function 𝑓(𝑥)=𝑥16𝑥𝑥4𝑥.

  • A{0,4}
  • B{0,4}
  • C{4,8}
  • D
  • E[0,4]

Q5:

Find the domain of the real function 𝑓(𝑥)=𝑥+48𝑥343.

  • A{7}
  • B{48}
  • C{7}
  • D{48}

Q6:

Find the common domain between the functions 𝑛(𝑥)=9𝑥+9, 𝑛(𝑥)=8𝑥+3, and 𝑛(𝑥)=7𝑥𝑥4𝑥.

  • A{9,3,2}
  • B{9,3,2,0,2}
  • C{9,3,0,2}
  • D{9,3,2,2}
  • E{2,0,2,3,9}

Q7:

Find 𝑘, given the domain of the function 𝑛(𝑥)=7𝑥+𝑘 is {4}.

Q8:

If the domain of the function 𝑓(𝑥)=5𝑥8𝑥+𝑘 is {4}, determine the value of 𝑘.

  • A𝑘=16
  • B𝑘=4
  • C𝑘=16
  • D𝑘=4

Q9:

Given that the domain of the function 𝑛(𝑥)=36𝑥+20𝑥+𝑎 is {2,0}, evaluate 𝑛(3).

Q10:

If the common domain of the two functions 𝑛(𝑥)=𝑥𝑥+64 and 𝑛(𝑥)=5𝑥+11𝑥𝑏 is {7,4}, find the value of 𝑏.

This lesson includes 36 additional questions and 385 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.