Question Video: Finding the Solution Set of Exponential Equations Using Logarithms | Nagwa Question Video: Finding the Solution Set of Exponential Equations Using Logarithms | Nagwa

نقاط المكافآت

اكسب نقاطًا من خلال تفاعلك مع المُدرس أثناء الحصة وإجابتك عن الأسئلة، واستخدمها لاحقًا للحصول على خصم عند شراء حصص أخرى.

Question Video: Finding the Solution Set of Exponential Equations Using Logarithms Mathematics • Second Year of Secondary School

Find the solution set to the equation 15^(𝑥) = 64. Give your answer to three decimal places.

01:35

Video Transcript

Find the solution set to the equation 15 to the power of 𝑥 equals 64. Give your answer to three decimal places.

To work out the value of any exponent in an equation of the form 𝑎 to the power of 𝑏 equals 𝑐, we need to know the link between exponents and logarithms. If 𝑎 to the power of 𝑏 equals 𝑐, then 𝑏 is equal to log 𝑐 to the base 𝑎. In this question, 𝑎 is equal to 15, 𝑏 is equal to 𝑥, and 𝑐 is equal to 64. This means that 𝑥 is equal to log 64 to the base 15. Typing this into the calculator gives us 1.535748 and so on.

We are asked to give our answer to three decimal places. This means that the seven is the deciding number. If the deciding number is five or greater, as in this case, we round up. Therefore, 𝑥 is equal to 1.536. As we are asked to give the solution set, we need to write our answer using set notation as shown. We could check this answer by substituting our value back into the original equation.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية