Question Video: Finding the Cross Product of Vectors of Square | Nagwa Question Video: Finding the Cross Product of Vectors of Square | Nagwa

نقاط المكافآت

اكسب نقاطًا من خلال تفاعلك مع المُدرس أثناء الحصة وإجابتك عن الأسئلة، واستخدمها لاحقًا للحصول على خصم عند شراء حصص أخرى.

Question Video: Finding the Cross Product of Vectors of Square Mathematics • Third Year of Secondary School

If 𝐴𝐵𝐶𝐷 is a square with a side length of 81 cm, and 𝐞 is a unit vector perpendicular to its plane, find 𝚨𝚩 × 𝚩𝐂.

02:05

Video Transcript

If 𝐴𝐵𝐶𝐷 is a square with a side length of 81 centimeters and 𝐞 is a unit vector perpendicular to its plane, find the cross product of vector 𝚨𝚩 and vector 𝚩𝐂.

We are told that 𝐴𝐵𝐶𝐷 is a square with a side length of 81 centimeters. We are told that 𝐞 is a unit vector perpendicular to its plane. And we want to find the cross product of vectors 𝚨𝚩 and 𝚩𝐂. The cross product of two vectors 𝚨 and 𝚩 is a vector perpendicular to the plane that contains 𝚨 and 𝚩 and whose magnitude is given by the magnitude of vector 𝚨 multiplied by the magnitude of vector 𝚩 multiplied by the magnitude of sin 𝜃, where 𝜃 is the angle between the two vectors.

Since each side of our square has length 81 centimeters, then the magnitude of vector 𝚨𝚩 is 81. Likewise, the magnitude of vector 𝚩𝐂 is 81. Since the vectors are the sides of a square, the angle between them is 90 degrees. The cross product of vectors 𝚨𝚩 and 𝚩𝐂 is therefore equal to 81 multiplied by 81 multiplied by the sin of 90 degrees multiplied by the unit vector 𝐞. We know that the sin of 90 degrees is equal to one. 81 multiplied by 81 is 6,561, which means that the cross product of 𝚨𝚩 and 𝚩𝐂 is 6,561𝐞.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية