Question Video: Integrating Trigonometric Functions Involving Reciprocal Trigonometric Functions | Nagwa Question Video: Integrating Trigonometric Functions Involving Reciprocal Trigonometric Functions | Nagwa

نقاط المكافآت

اكسب نقاطًا من خلال تفاعلك مع المُدرس أثناء الحصة وإجابتك عن الأسئلة، واستخدمها لاحقًا للحصول على خصم عند شراء حصص أخرى.

Question Video: Integrating Trigonometric Functions Involving Reciprocal Trigonometric Functions Mathematics • Third Year of Secondary School

Determine ∫ 2 csc 3𝑥 cot 3𝑥 d𝑥.

01:29

Video Transcript

Determine the indefinite integral of two csc three 𝑥 cot three 𝑥 with respect to 𝑥.

The given integrand is the product of a cosecant and cotangent function, both with the argument of three 𝑥. We recall the standard integral of the product of the cosecant and cotangent functions. The indefinite integral of csc of 𝑥 multiplied by cot of 𝑥 with respect to 𝑥 is equal to the negative csc of 𝑥 plus 𝐶. In the given integrand, the argument for both functions is three 𝑥 rather than 𝑥. So in order to apply the standard integral, we need to use a substitution.

We let 𝑢 equal three 𝑥, which in turn implies that d𝑢 by d𝑥 is equal to three. And so one-third d𝑢 is equivalent to d𝑥. Making this change of variable in the integral, we get the indefinite integral of two csc 𝑢 cot 𝑢 one-third d𝑢. Taking the constant factor of two-thirds out the front of the integral and then applying our standard result gives negative two-thirds csc 𝑢 plus a constant of integration 𝐶. All that remains is to reverse the substitution by replacing 𝑢 with three 𝑥.

And so we obtain our final answer. The indefinite interval of two csc three 𝑥 cot three 𝑥 with respect to 𝑥 is equal to negative two-thirds csc of three 𝑥 plus 𝐶.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية