Worksheet: Square Roots of Perfect Squares

In this worksheet, we will practice finding square roots of perfect square integers, fractions, and decimals.

Q1:

Calculate 1 + 4 + 9 + 4 0 0 + 8 4 1 + 9 0 0 + 9 6 1 .

Q2:

Find the two square roots of 4 9 .

  • A 2 3
  • B 2 3
  • C 4 9 , 4 9
  • D 2 3 , 2 3
  • E 3 2 , 3 2

Q3:

Replace 𝑥 by a positive number to make 1 6 9 = 𝑥 2 true.

  • A 2 3
  • B 1 6 3
  • C 8 3
  • D 4 3
  • E 4 9

Q4:

Calculate 1 9 6 2 5 .

  • A 1 8 5
  • B 9 8 1 2
  • C 1 4 9
  • D 1 4 5

Q5:

Calculate 8 1 × 1 6 .

Q6:

Solve 𝑥 = 1 6 1 6 9 .

  • A 𝑥 = 1 or 𝑥 = 1 6 1 6 9
  • B 𝑥 = 1 6 1 6 9 or 𝑥 = 1 6 1 6 9
  • C 𝑥 = 1 3 4 or 𝑥 = 1 3 4
  • D 𝑥 = 4 1 3 or 𝑥 = 4 1 3
  • E 𝑥 = 1 6 9 1 6 or 𝑥 = 1 6 9 1 6

Q7:

Evaluate 3 6 .

  • A18 or 1 8
  • B6 or 6
  • C18
  • D6
  • E9 or 9

Q8:

Calculate the following: 4 .

Q9:

Calculate 0 . 2 5 .

  • A 5 3
  • B 1
  • C 5 2
  • D 1 2

Q10:

Evaluate 0 . 0 0 0 1 6 9 .

Q11:

Find 4 4 1 5 2 9 .

  • A 2 3 2 1
  • B 2 1 2 3
  • C 2 3 2 1
  • D 2 1 2 3
  • E 1 2 3

Q12:

Calculate ± 3 6 1 1 0 0 .

  • A 7 5 0 , 7 5 0
  • B 7 1 0 , 7 1 0
  • C 1 9 2 9 , 1 9 2 9
  • D 1 9 1 0 , 1 9 1 0

Q13:

A squared mosaic is made up of 1,800 white squares and 1,800 black squares of equal sizes. Determine the number of squares required to make one side of the mosaic.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.