Question Video: Calculating the Capacitance in a RLC Circuit | Nagwa Question Video: Calculating the Capacitance in a RLC Circuit | Nagwa

نقاط المكافآت

اكسب نقاطًا من خلال تفاعلك مع المُدرس أثناء الحصة وإجابتك عن الأسئلة، واستخدمها لاحقًا للحصول على خصم عند شراء حصص أخرى.

Question Video: Calculating the Capacitance in a RLC Circuit Physics • Third Year of Secondary School

In the following RLC circuit, if the ammeter reads a current of 5 A, calculate the value of the capacitor’s capacitance. Give your answer in scientific notation to two decimal places.

01:53

Video Transcript

In the following RLC circuit, if the ammeter reads a current of 5 amperes, calculate the value of the capacitor’s capacitance. Give your answer in scientific notation to two decimal places.

Here, we’ve been given an RLC circuit diagram and information about its various components. Our job is to calculate the unknown capacitance of the capacitor, labeled as 𝐶. To do this, we can recall a formula that relates capacitance, 𝐶, to the resonant frequency, 𝐹, and inductance, 𝐿, of a circuit: two 𝜋𝐹 equals the square root of one over 𝐿𝐶.

Since we’re interested in solving for 𝐶, let’s rearrange this equation to make 𝐶 the subject. We can start by squaring both sides to undo the radical that 𝐶 appears under. Then, we’ll take the reciprocal of both sides to move 𝐶 from the denominator to the numerator. Finally, we can divide both sides by 𝐿 to get 𝐶 by itself. Thus, the expression can be written as 𝐶 equals one over two 𝜋𝐹 squared times 𝐿.

Since we already know the values of inductance and resonant frequency for this circuit, we have everything we need to find the capacitance 𝐶. Notice that we don’t even need to use all of the values given to us in the circuit diagram, and that’s okay. We know that 𝐹 equals 100 hertz and that 𝐿 equals three henries. Both of these values are already expressed in SI-derived units, so they’re ready to be substituted into the formula.

Doing this and grabbing a calculator, we get a result of 8.4434 and so on times 10 to the negative seven farads, which is the SI-derived unit of capacitance. We’ve been told to give our answer in scientific notation to two decimal places. This is already in scientific notation. So just rounding to two decimal places, we reach a final answer of 8.44 times 10 to the negative seven farads.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية