Question Video: Evaluating the Definite Integral of a Function Containing Root Using Integration by Substitution | Nagwa Question Video: Evaluating the Definite Integral of a Function Containing Root Using Integration by Substitution | Nagwa

نقاط المكافآت

اكسب نقاطًا من خلال تفاعلك مع المُدرس أثناء الحصة وإجابتك عن الأسئلة، واستخدمها لاحقًا للحصول على خصم عند شراء حصص أخرى.

Question Video: Evaluating the Definite Integral of a Function Containing Root Using Integration by Substitution Mathematics

Convert the parametric equations 𝑥 = 𝑡² + 2 and 𝑦 = 3𝑡 − 1 to rectangular form.

01:05

Video Transcript

Convert the parametric equations 𝑥 equals 𝑡 squared plus two and 𝑦 equals three 𝑡 minus one to rectangular form.

Here, we have a pair of parametric equations. We have 𝑥 is equal to some function of 𝑡 and 𝑦 is equal to some other function of 𝑡. To convert parametric equations to rectangular form, we need to find a way to eliminate the 𝑡. So looking at our equations, we can see that we can rearrange the equation in 𝑦 to make 𝑡 the subject. We begin by adding one to both sides. And then, we divide through by three. So we see that 𝑡 is equal to 𝑦 plus one all over three.

Now, we go back to our equation for 𝑥. We replace 𝑡 with 𝑦 plus one over three. And we find that 𝑥 equals 𝑦 plus one over three all squared plus two. And there will be certain circumstances where we’re required to distribute the parentheses and simplify. In this case, that’s not necessary. And so, we’re finished. We’ve converted the parametric equations 𝑥 equals 𝑡 squared plus two and 𝑦 equals three 𝑡 minus one into rectangular or Cartesian form. It’s 𝑥 equals 𝑦 plus one over three all squared plus two.

انضم إلى نجوى كلاسيز

شارك في الحصص المباشرة على نجوى كلاسيز وحقق التميز الدراسي بإرشاد وتوجيه من مدرس خبير!

  • حصص تفاعلية
  • دردشة ورسائل
  • أسئلة امتحانات واقعية

تستخدم «نجوى» ملفات تعريف الارتباط لضمان حصولك على أفضل تجربة على موقعنا. اعرف المزيد عن سياسة الخصوصية