Plan de la leçon : Forme polaire des nombres complexes Mathématiques
Ce plan de leçon comprend les objectifs, les prérequis et les exclusions de la leçon apprenant aux élèves à représenter un nombre complexe sous forme polaire, à calculer le module et l’argument, et à utiliser ces notions pour changer la forme d’un nombre complexe.
Objectifs
Les élèves pourront
- écrire un nombre complexe représenté sur un diagramme d’Argand sous forme polaire,
- écrire un nombre complexe sous forme polaire, étant donné son module et son argument,
- calculer le module et l’argument d’un nombre complexe écrit sous forme cartésienne,
- écrire un nombre complexe sous forme cartésienne étant donné son module et son argument,
- déterminer le module et l’argument d’un nombre complexe représenté sous forme polaire,
- passer de la forme cartésienne à la forme polaire d’un nombre complexe,
- écrire le conjugué du nombre complexe sous forme polaire.
Prérequis
Les élèves doivent être déjà familiarisés avec
- les nombres complexes écrits sous forme cartésienne,
- les diagrammes d’Argand,
- les conjugués des nombres complexes et leurs propriétés.
Exclusions
Les élèves ne couvriront pas
- les nombres complexes écrits sous forme exponentielle,
- les opérations sur les nombres complexes sous forme polaire,
- la formule de Moivre.