Atividade: Introdução ao Símbolo de Somatório

Nesta atividade, nós vamos praticar a expansão de uma expressão escrita como um somatório e a utilização deste conhecimento para escrever a soma de uma sucessão de termos que segue uma lei de formação.

Q1:

Escreve a expressão 1 2 + 1 4 1 8 + 1 1 6 como um somatório, com .

  • A 1 2
  • B 1 2
  • C 1 2
  • D 1 2

Q2:

Expandir e depois calcular ( 2 5 2 ) .

  • A ( 2 5 2 ) = ( 2 5 2 ) + 2 5 2 + 2 5 2 = 1 7 8
  • B ( 2 5 2 ) = ( 2 + 5 2 ) + 2 + 5 2 + 2 + 5 2 + 2 + 5 2 = 2 3 8
  • C ( 2 5 2 ) = 2 + 5 2 + 2 + 5 2 + 2 + 5 2 = 1 8 4
  • D ( 2 5 2 ) = ( 2 5 2 ) + 2 5 2 + 2 5 2 + 2 5 2 = 1 7 8
  • E ( 2 5 2 ) = ( 2 5 2 ) + 2 5 2 + 2 5 2 + 2 5 2 = 1 8 8

Q3:

Expandir e depois calcular 1 9 𝑟 .

  • A 1 9 × 1 + 1 9 × 2 + 1 9 × 4 = 1 0 4 5 .
  • B 1 9 × 1 + 1 9 × 2 + 1 9 × 3 + 1 9 × 4 = 8 7 4 .
  • C 1 9 × 2 + 1 9 × 3 + 1 9 × 4 = 1 0 2 6 .
  • D 1 9 × 1 + 1 9 × 2 + 1 9 × 3 + 1 9 × 4 = 5 7 0 .

Q4:

Expanda e depois calcule ( 3 1 𝑟 + 8 0 ) .

  • A ( 3 1 × 1 + 8 0 ) + ( 3 1 × 2 + 8 0 ) + ( 3 1 × 3 + 8 0 ) + ( 3 1 × 4 + 8 0 ) = 1 1 9 3
  • B ( 3 1 × 1 8 0 ) + ( 3 1 × 2 8 0 ) + ( 3 1 × 3 8 0 ) + ( 3 1 × 4 8 0 ) = 3 0 8
  • C ( 3 1 × 1 + 8 0 ) + ( 3 1 × 2 + 8 0 ) + ( 3 1 × 3 + 8 0 ) + ( 3 1 × 4 + 8 0 ) = 1 0 5 1
  • D ( 3 1 × 1 + 8 0 ) + ( 3 1 × 2 + 8 0 ) + ( 3 1 × 3 + 8 0 ) + ( 3 1 × 4 + 8 0 ) = 1 4 2 8

Q5:

Calcule 1 4 ( 2 ) .

  • A 2
  • B 6 3 4
  • C62
  • D126

Q6:

Calcule 2 5 .

Q7:

Calcule 8 𝑟 .

  • A 9 8 5
  • B 1 4 3
  • C 2 6 3
  • D 9 4 1 5

Q8:

Calcule 1 2 .

  • A 1 5 2
  • B 3 1 3 2
  • C 1 5 2
  • D 3 1 3 2
  • E 2 9 3 2

Q9:

Expresse a série ( 3 2 × 3 3 ) + ( 3 3 × 3 4 ) + ( 3 4 × 3 5 ) + na notação sigma.

  • A ( 𝑟 + 3 1 ) ( 𝑟 + 3 2 )
  • B ( 3 2 × 𝑟 ) ( 3 3 × 𝑟 )
  • C ( 𝑟 + 3 1 ) + ( 𝑟 + 3 2 )
  • D ( 𝑟 + 3 1 ) ( 𝑟 + 3 2 )

Q10:

Escreva a expressão 5 4 × 1 2 + 5 4 × 2 4 + 5 4 × 3 6 + + 5 4 × 2 4 0 como um somatório.

  • A 6 4 8 𝑟
  • B 6 4 8 𝑟
  • C ( 𝑟 + 6 4 8 )
  • D 6 4 8 𝑟

Q11:

Escreva a soma 8 + 3 2 + 7 2 + 1 2 8 + + 5 1 2 na forma de somatório.

  • A 8 𝑟
  • B 8 𝑟
  • C 8 𝑟
  • D 8 𝑟

Q12:

Uma criança quer construir uma pirâmide usando cubos de madeira idênticos. O ápice da pirâmide consiste em um cubo, sua segunda linha consiste em dois cubos e sua terceira linha consiste em três cubos, e assim por diante até 5 linhas. Use a notação sigma para descrever a quantidade de cubos necessária para construir a pirâmide e, em seguida, calcule esse número.

  • A 𝑟 , 21 cubos
  • B 𝑟 , 10 cubos
  • C 𝑟 , 10 cubos
  • D 𝑟 , 15 cubos

Q13:

Expanda e calcule 1 𝑟 + 4 2 1 𝑟 + 4 1 .

  • A 1 4 3 1 4 2 + 1 4 4 1 4 3 + 1 4 5 1 4 4 + + 1 𝑛 + 4 2 1 𝑛 + 4 1 = 𝑛 4 2 ( 𝑛 + 4 2 )
  • B 1 4 3 1 4 2 + 1 4 4 1 4 3 + 1 4 5 1 4 4 + + 1 𝑛 + 4 2 1 𝑛 + 4 1 = 𝑛 + 8 4 4 2 ( 𝑛 + 4 2 )
  • C 1 4 3 1 4 2 + 1 4 4 1 4 3 + 1 4 5 1 4 4 + + 1 𝑛 + 4 2 1 𝑛 + 4 1 = 𝑛 8 4 4 2 ( 𝑛 + 4 2 )
  • D 1 4 3 1 4 2 + 1 4 4 1 4 3 + 1 4 5 1 4 4 + + 1 𝑛 + 4 2 1 𝑛 + 4 1 = 𝑛 4 2 ( 𝑛 + 4 2 )

Q14:

Calcule ( 2 ) .

  • A 10‎ ‎560
  • B 12‎ ‎672
  • C 26‎ ‎637
  • D 8‎ ‎064

Q15:

Desenvolva 1 5 .

  • A ( 1 5 6 2 5 ; 3 1 2 5 ; 6 2 5 ; 1 2 5 ; )
  • B ( 1 5 6 2 5 3 1 2 5 + 6 2 5 1 2 5 )
  • C ( 1 5 6 2 5 ; 3 1 2 5 ; 6 2 5 ; 1 2 5 )
  • D ( 1 5 6 2 5 3 1 2 5 + 6 2 5 1 2 5 + )

Q16:

Expanda ( 1 ) ( 5 6 𝑟 ) .

  • A 5 6 + 5 6 5 6 + 5 6 +
  • B 3 3 6 3 9 2 + 4 4 8 5 0 4 +
  • C 5 6 5 6 + 5 6 5 6 +
  • D 3 3 6 + 3 9 2 4 4 8 + 5 0 4 +

A Nagwa usa cookies para garantir que você tenha a melhor experiência em nosso site. Saiba mais sobre nossa Política de privacidade.