Atividade: A Regra em Cadeia

Nesta atividade, nós vamos praticar a regra da cadeia de derivadas de funções de variável única.

Q1:

Determine a primeira derivada da funรงรฃo ๐‘ฆ = ๏€น 5 ๐‘ฅ โˆ’ 6 ๏… 2 6 .

  • A 6 0 ๐‘ฅ ๏€น 5 ๐‘ฅ โˆ’ 6 ๏… 2 7
  • B 6 ๏€น 5 ๐‘ฅ โˆ’ 6 ๏… 2 5
  • C 6 ๏€น 5 ๐‘ฅ โˆ’ 6 ๏… 2 7
  • D 6 0 ๐‘ฅ ๏€น 5 ๐‘ฅ โˆ’ 6 ๏… 2 5

Q2:

Determine a primeira derivada da funรงรฃo ๐‘ฆ = 1 4 ๐‘’ ๏Šง ๏Šฑ ๏Šฉ ๏— ๏Žฃ .

  • A 1 4 ๐‘ฅ ๐‘’ ๏Šฉ ๏Šง ๏Šฑ ๏Šฉ ๏— ๏Žฃ
  • B 3 ๐‘ฅ ๐‘’ ๏Šฉ ๏Šง ๏Šฑ ๏Šฉ ๏— ๏Žฃ
  • C 3 ๐‘’ ๏Šง ๏Šฑ ๏Šฉ ๏— ๏Žฃ
  • D โˆ’ 3 ๐‘ฅ ๐‘’ ๏Šฉ ๏Šง ๏Šฑ ๏Šฉ ๏— ๏Žฃ
  • E 3 4 ๐‘ฅ ๐‘’ ๏Šฉ ๏Šง ๏Šฑ ๏Šฉ ๏— ๏Žฃ

Q3:

Se ๐‘ฆ = ๏€ผ 8 ๐‘ฅ ๏ˆ c o s 5 , determine d d ๐‘ฆ ๐‘ฅ .

  • A โˆ’ 8 ๐‘ฅ ๏€ผ 8 ๐‘ฅ ๏ˆ 5 5 c o s
  • B โˆ’ 4 0 ๐‘ฅ ๏€ผ 8 ๐‘ฅ ๏ˆ 5 5 c o s
  • C โˆ’ 8 ๐‘ฅ ๏€ผ 8 ๐‘ฅ ๏ˆ 5 5 s e n
  • D 4 0 ๐‘ฅ ๏€ผ 8 ๐‘ฅ ๏ˆ 6 5 s e n
  • E โˆ’ 4 0 ๐‘ฅ ๏€ผ 8 ๐‘ฅ ๏ˆ 6 5 c o s

Q4:

Determine a derivada de ๐‘ฆ = ๏€น โˆ’ 2 ๐‘ฅ โˆ’ 3 ๐‘ฅ + 4 ๏… 2 5 5 .

  • A ๐‘ฆ โ€ฒ = ( โˆ’ 4 ๐‘ฅ โˆ’ 3 ) ๏€น โˆ’ 2 ๐‘ฅ โˆ’ 3 ๐‘ฅ + 4 ๏… 2 5 4
  • B ๐‘ฆ โ€ฒ = 5 5 ( โˆ’ 4 ๐‘ฅ โˆ’ 3 ) ๏€น โˆ’ 2 ๐‘ฅ โˆ’ 3 ๐‘ฅ + 4 ๏… 2 5 5
  • C ๐‘ฆ โ€ฒ = ๏€น โˆ’ 4 ๐‘ฅ โˆ’ 3 ๐‘ฅ ๏… ๏€น โˆ’ 2 ๐‘ฅ โˆ’ 3 ๐‘ฅ + 4 ๏… 2 2 5 5
  • D ๐‘ฆ โ€ฒ = 5 5 ( โˆ’ 4 ๐‘ฅ โˆ’ 3 ) ๏€น โˆ’ 2 ๐‘ฅ โˆ’ 3 ๐‘ฅ + 4 ๏… 2 5 4
  • E ๐‘ฆ โ€ฒ = 5 5 ๏€น โˆ’ 4 ๐‘ฅ โˆ’ 3 ๐‘ฅ ๏… ๏€น โˆ’ 2 ๐‘ฅ โˆ’ 3 ๐‘ฅ + 4 ๏… 2 2 5 4

Q5:

Determine d d ๐‘ฆ ๐‘ฅ se ๐‘ฆ = ( 5 ๐‘ฅ ) t g c o t g .

  • A โˆ’ 5 ๐‘ฅ ( 5 ๐‘ฅ ) c o s s e c s e c c o t g 2
  • B 5 ๐‘ฅ ( 5 ๐‘ฅ ) c o s s e c s e c c o t g 2 2
  • C โˆ’ 5 ๐‘ฅ ( 5 ๐‘ฅ ) c o s s e c s e c c o t g 2
  • D โˆ’ 5 ๐‘ฅ ( 5 ๐‘ฅ ) c o s s e c s e c c o t g 2 2
  • E โˆ’ 5 ๐‘ฅ ( 5 ๐‘ฅ ) c o s s e c s e c c o t g

Q6:

Encontre a primeira derivada da funรงรฃo ๐‘ฆ = ๐‘’ 7 ๐‘ฅ ๏— s e n .

  • A โˆ’ ๐‘’ 7 ๐‘ฅ โˆ’ 7 ๐‘’ 7 ๐‘ฅ ๏— ๏— s e n c o s
  • B โˆ’ ๐‘’ 7 ๐‘ฅ + 7 ๐‘’ 7 ๐‘ฅ ๏— ๏— s e n c o s
  • C ๐‘’ 7 ๐‘ฅ โˆ’ 7 ๐‘’ 7 ๐‘ฅ ๏— ๏— s e n c o s
  • D ๐‘’ 7 ๐‘ฅ + 7 ๐‘’ 7 ๐‘ฅ ๏— ๏— s e n c o s

Q7:

Determine a derivada da funรงรฃo ๐‘“ ( ๐‘ก ) = 4 ๐‘’ ๏Šซ ๏ ๏ s e n .

  • A ๐‘“ โ€ฒ ( ๐‘ก ) = 4 ๐‘’ ( ๐‘ก + 5 ) ๏Šซ ๏ ๏ s e n c o s
  • B ๐‘“ โ€ฒ ( ๐‘ก ) = โˆ’ 2 0 ๐‘’ ( ๐‘ก ๐‘ก โˆ’ ๐‘ก ) ๏Šซ ๏ ๏ s e n c o s s e n
  • C ๐‘“ โ€ฒ ( ๐‘ก ) = โˆ’ 4 ๐‘’ ( ๐‘ก โˆ’ 5 ) ๏Šซ ๏ ๏ s e n c o s
  • D ๐‘“ โ€ฒ ( ๐‘ก ) = 2 0 ๐‘’ ( ๐‘ก ๐‘ก + ๐‘ก ) ๏Šซ ๏ ๏ s e n c o s s e n

Q8:

Encontre a primeira derivada de ๐‘ฆ โˆถ ๐‘ฆ = โˆ’ 7 ๏€น 3 ๐‘ฅ ๏… s e c t g 3 .

  • A โˆ’ 2 1 ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… t g t g t g s e c s e c t g 3 3 2 3
  • B 6 3 ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… t g t g t g s e c s e c t g 2 3 2 3
  • C โˆ’ 6 3 ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… t g t g t g s e c s e c t g 2 3 3
  • D โˆ’ 6 3 ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… ๐‘ฅ ๏€น 3 ๐‘ฅ ๏… t g t g t g s e c s e c t g 2 3 2 3

Q9:

Determine a primeira derivada da funรงรฃo ๐‘ฆ = โˆš 8 ๐‘ฅ โˆ’ 9 ๐‘ฅ s e n 8 .

  • A 4 โˆ’ 3 6 9 ๐‘ฅ โˆš 8 ๐‘ฅ โˆ’ 9 ๐‘ฅ s e n s e n 7 8
  • B 4 + 3 6 9 ๐‘ฅ 9 ๐‘ฅ โˆš 8 ๐‘ฅ โˆ’ 9 ๐‘ฅ s e n c o s s e n 7 8
  • C 4 โˆ’ 4 9 ๐‘ฅ 9 ๐‘ฅ โˆš 8 ๐‘ฅ โˆ’ 9 ๐‘ฅ s e n c o s s e n 7 8
  • D 4 โˆ’ 3 6 9 ๐‘ฅ 9 ๐‘ฅ โˆš 8 ๐‘ฅ โˆ’ 9 ๐‘ฅ s e n c o s s e n 7 8

Q10:

Se ๐‘ฆ = โˆš 8 ๐‘ฅ โˆ’ 5 ๐‘ฅ s e n 4 , determine d d ๐‘ฆ ๐‘ฅ .

  • A โˆ’ 2 0 5 ๐‘ฅ 5 ๐‘ฅ + 8 โˆš 8 ๐‘ฅ โˆ’ 5 ๐‘ฅ s e n c o s s e n 3 4
  • B 1 0 5 ๐‘ฅ 5 ๐‘ฅ + 4 โˆš 8 ๐‘ฅ 5 ๐‘ฅ s e n c o s s e n 3 4
  • C โˆ’ 2 0 5 ๐‘ฅ 5 ๐‘ฅ + 8 s e n c o s 3
  • D โˆ’ 1 0 5 ๐‘ฅ 5 ๐‘ฅ + 4 โˆš 8 ๐‘ฅ โˆ’ 5 ๐‘ฅ s e n c o s s e n 3 4
  • E โˆš 8 ๐‘ฅ โˆ’ 5 ๐‘ฅ ๏€น โˆ’ 2 0 5 ๐‘ฅ 5 ๐‘ฅ + 8 ๏… s e n s e n c o s 4 3

Q11:

Encontre a primeira derivada da funรงรฃo ๐‘ฆ = 6 3 ๐‘’ s e c ๏Šซ ๏— .

  • A 1 5 ๐‘’ 3 ๐‘’ 3 ๐‘’ ๏Šซ ๏— ๏Šซ ๏— ๏Šซ ๏— t g s e c
  • B 6 3 ๐‘’ 3 ๐‘’ t g s e c ๏Šซ ๏— ๏Šซ ๏—
  • C 9 0 ๐‘’ 3 ๐‘’ ๏Šซ ๏— ๏Šซ ๏— s e c
  • D 9 0 ๐‘’ 3 ๐‘’ 3 ๐‘’ ๏Šซ ๏— ๏Šซ ๏— ๏Šซ ๏— t g s e c
  • E โˆ’ 9 0 ๐‘’ 3 ๐‘’ 3 ๐‘’ ๏Šซ ๏— ๏Šซ ๏— ๏Šซ ๏— t g s e c

Q12:

Se ๐‘ฆ = ๏€ผ ๐‘ฅ 9 ๐‘ฅ + 5 ๏ˆ c o s 7 , encontre d d ๐‘ฆ ๐‘ฅ .

  • A 3 5 ๏€ป ๏‡ ๏€ป ๏‡ ( 9 ๐‘ฅ + 5 ) s e n c o s ๐‘ฅ 9 ๐‘ฅ + 5 6 ๐‘ฅ 9 ๐‘ฅ + 5 2
  • B โˆ’ 5 ๏€ป ๏‡ ๏€ป ๏‡ ( 9 ๐‘ฅ + 5 ) s e n c o s ๐‘ฅ 9 ๐‘ฅ + 5 6 ๐‘ฅ 9 ๐‘ฅ + 5 2
  • C 7 ๏€ผ ๐‘ฅ 9 ๐‘ฅ + 5 ๏ˆ c o s 6
  • D โˆ’ 3 5 ๏€ป ๏‡ ๏€ป ๏‡ ( 9 ๐‘ฅ + 5 ) s e n c o s ๐‘ฅ 9 ๐‘ฅ + 5 6 ๐‘ฅ 9 ๐‘ฅ + 5 2
  • E โˆ’ 7 ๏€ผ ๐‘ฅ 9 ๐‘ฅ + 5 ๏ˆ ๏€ผ ๐‘ฅ 9 ๐‘ฅ + 5 ๏ˆ s e n c o s 6

Q13:

Encontre a primeira derivada de ๐‘ฆ = ๏„ž 9 ๐‘ฅ โˆ’ 4 9 ๐‘ฅ + 4 s e c s e c .

  • A 3 6 9 ๐‘ฅ 9 ๐‘ฅ ( 9 ๐‘ฅ โˆ’ 4 ) ( 9 ๐‘ฅ + 4 ) ๏„ž 9 ๐‘ฅ โˆ’ 4 9 ๐‘ฅ + 4 s e c t g s e c s e c s e c s e c ๏Šจ ๏Šจ
  • B โˆ’ 3 6 9 ๐‘ฅ 9 ๐‘ฅ ( 9 ๐‘ฅ โˆ’ 4 ) ( 9 ๐‘ฅ + 4 ) ๏„ž 9 ๐‘ฅ โˆ’ 4 9 ๐‘ฅ + 4 s e c t g s e c s e c s e c s e c
  • C 3 6 9 ๐‘ฅ ( 9 ๐‘ฅ โˆ’ 4 ) ( 9 ๐‘ฅ + 4 ) ๏„ž 9 ๐‘ฅ โˆ’ 4 9 ๐‘ฅ + 4 t g s e c s e c s e c s e c ๏Šจ
  • D 3 6 9 ๐‘ฅ 9 ๐‘ฅ ( 9 ๐‘ฅ โˆ’ 4 ) ( 9 ๐‘ฅ + 4 ) ๏„ž 9 ๐‘ฅ โˆ’ 4 9 ๐‘ฅ + 4 s e c t g s e c s e c s e c s e c

Q14:

Determine d d ๐‘ฆ ๐‘ฅ se ๐‘ฆ = ๐‘’ ร— 8 c o s ๏— ๏Šซ ๏— .

  • A 8 ๐‘’ ๏€น 1 + 5 8 ๏… ๏Šซ ๏— ๏— ๏Šซ ๏— c o s l n
  • B 8 ๐‘’ ๏€น โˆ’ ๐‘ฅ + 8 ๏… ๏Šซ ๏— ๏— ๏Šซ ๏— c o s s e n l n
  • C 8 ๐‘’ ( 1 + 8 ) ๏Šซ ๏— ๏— c o s l n
  • D 8 ๐‘’ ( โˆ’ ๐‘ฅ + 5 8 ) ๏Šซ ๏— ๏— c o s s e n l n

Q15:

Determine a primeira derivada da funรงรฃo ๐‘“ ( ๐‘ฅ ) = ๏€น 4 4 ๐‘ฅ ๏… s e n c o s s e c ๏Šจ .

  • A โˆ’ 3 2 ๐‘ฅ 4 ๐‘ฅ ๏€น 4 4 ๐‘ฅ ๏… c o t g c o s c o s s e c ๏Šจ ๏Šจ ๏Šจ
  • B 3 2 ๐‘ฅ 4 ๐‘ฅ 4 ๐‘ฅ ๏€น 4 4 ๐‘ฅ ๏… c o s s e c c o t g c o s c o s s e c ๏Šจ ๏Šจ ๏Šจ
  • C โˆ’ 3 2 ๐‘ฅ 4 ๐‘ฅ 4 ๐‘ฅ ๏€น 4 4 ๐‘ฅ ๏… c o s s e c t g c o s c o s s e c ๏Šจ ๏Šจ ๏Šจ
  • D โˆ’ 3 2 ๐‘ฅ 4 ๐‘ฅ 4 ๐‘ฅ ๏€น 4 4 ๐‘ฅ ๏… c o s s e c c o t g c o s c o s s e c ๏Šจ ๏Šจ ๏Šจ

Q16:

Se ๐‘ฆ = โˆ’ 8 ( 6 ๐‘ฅ ) โˆ’ ( 6 ๐‘ฅ ) s e n s e n c o s s e n , encontre d d ๐‘ฆ ๐‘ฅ .

  • A c o s c o s s e n c o s s e n 6 ๐‘ฅ ๏‘ โˆ’ 8 ( 6 ๐‘ฅ ) + ( 6 ๐‘ฅ ) ๏
  • B โˆ’ 6 6 ๐‘ฅ ๏‘ โˆ’ 8 ( 6 ๐‘ฅ ) โˆ’ ( 6 ๐‘ฅ ) ๏ c o s c o s s e n c o s s e n
  • C โˆ’ 6 6 ๐‘ฅ ๏‘ โˆ’ 8 ( 6 ๐‘ฅ ) + ( 6 ๐‘ฅ ) ๏ c o s c o s s e n s e n s e n
  • D 6 6 ๐‘ฅ ๏‘ โˆ’ 8 ( 6 ๐‘ฅ ) + ( 6 ๐‘ฅ ) ๏ c o s c o s s e n s e n s e n

Q17:

Determine a derivada da funรงรฃo ๐‘  ( ๐‘ก ) = ๏„ž โˆ’ ๐‘ก + 7 โˆ’ ๐‘ก + 7 s e n c o s .

  • A ๐‘  โ€ฒ ( ๐‘ก ) = โˆ’ 7 ๐‘ก + 7 ๐‘ก โˆ’ 1 2 โˆš โˆ’ ๐‘ก + 7 ( โˆ’ ๐‘ก + 7 ) s e n c o s s e n c o s ๏Žก ๏Žข
  • B ๐‘  โ€ฒ ( ๐‘ก ) = 7 ๐‘ก + 7 ๐‘ก โˆ’ 1 2 โˆš โˆ’ ๐‘ก + 7 ( โˆ’ ๐‘ก + 7 ) s e n c o s s e n c o s ๏Žข ๏Žก
  • C ๐‘  โ€ฒ ( ๐‘ก ) = โˆ’ 7 ๐‘ก + 7 ๐‘ก + 1 2 โˆš โˆ’ ๐‘ก + 7 ( โˆ’ ๐‘ก + 7 ) s e n c o s s e n c o s ๏Žข ๏Žก
  • D ๐‘  โ€ฒ ( ๐‘ก ) = โˆ’ 7 ๐‘ก + 7 ๐‘ก โˆ’ 1 2 โˆš โˆ’ ๐‘ก + 7 ( โˆ’ ๐‘ก + 7 ) s e n c o s s e n c o s ๏Žข ๏Žก
  • E ๐‘  โ€ฒ ( ๐‘ก ) = โˆ’ 7 ๐‘ก + 7 ๐‘ก + 1 2 โˆš โˆ’ ๐‘ก + 7 ( โˆ’ ๐‘ก + 7 ) s e n c o s s e n c o s ๏Žก ๏Žข

Q18:

Encontre a derivada da funรงรฃo ๐‘ฆ = ๏„ ( ๐œ‹ ๐‘ฅ ) c o s s e n t g .

  • A ๐‘ฆ โ€ฒ = ๐œ‹ ( ๐œ‹ ๐‘ฅ ) ( ๐œ‹ ๐‘ฅ ) โˆš ( ๐œ‹ ๐‘ฅ ) โˆš ( ๐œ‹ ๐‘ฅ ) c o s t g s e c s e n s e n t g s e n t g ๏Šจ
  • B ๐‘ฆ โ€ฒ = ๐œ‹ ( ๐œ‹ ๐‘ฅ ) ( ๐œ‹ ๐‘ฅ ) โˆš ( ๐œ‹ ๐‘ฅ ) 2 โˆš ( ๐œ‹ ๐‘ฅ ) c o s t g s e c s e n s e n t g s e n t g ๏Šจ
  • C ๐‘ฆ โ€ฒ = 2 ๐œ‹ ( ๐œ‹ ๐‘ฅ ) ( ๐œ‹ ๐‘ฅ ) โˆš ( ๐œ‹ ๐‘ฅ ) โˆš ( ๐œ‹ ๐‘ฅ ) c o s t g s e c s e n s e n t g s e n t g ๏Šจ
  • D ๐‘ฆ โ€ฒ = โˆ’ ๐œ‹ ( ๐œ‹ ๐‘ฅ ) ( ๐œ‹ ๐‘ฅ ) โˆš ( ๐œ‹ ๐‘ฅ ) 2 โˆš ( ๐œ‹ ๐‘ฅ ) c o s t g s e c s e n s e n t g s e n t g ๏Šจ
  • E ๐‘ฆ โ€ฒ = ๐œ‹ ( ๐œ‹ ๐‘ฅ ) โˆš ( ๐œ‹ ๐‘ฅ ) 2 โˆš ( ๐œ‹ ๐‘ฅ ) c o s t g s e n s e n t g s e n t g

Q19:

Derive ๐‘“ ( ๐‘ฅ ) = ๐‘’ ๐‘ฅ ๏— c o s s e c .

  • A ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘’ ๏€น ๐‘ฅ โˆ’ ๐‘ฅ ๏… ๏— ๏Šจ c o s s e c c o t g
  • B ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘’ ๐‘ฅ ( 1 + ๐‘ฅ ) ๏— c o s s e c c o t g
  • C ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘ฅ ( 1 โˆ’ ๐‘’ ๐‘ฅ ) s e c c o t g ๏—
  • D ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘’ ๐‘ฅ ( 1 โˆ’ ๐‘ฅ ) ๏— c o s s e c c o t g
  • E ๐‘“ โ€ฒ ( ๐‘ฅ ) = โˆ’ ๐‘’ ๐‘ฅ ๐‘ฅ ๏— c o s s e c c o t g

Q20:

Encontre a derivada da funรงรฃo ๐‘ง = 5 ( ( 9 ๐‘ฅ + 6 ) ) l n c o t g .

  • A โˆ’ 5 ( 9 ๐‘ฅ + 6 ) ( 9 ๐‘ฅ + 6 ) c o s s e c c o t g ๏Šจ
  • B 4 5 ( 9 ๐‘ฅ + 6 ) ( 9 ๐‘ฅ + 6 ) c o s s e c c o t g ๏Šจ
  • C โˆ’ 4 5 ( 9 ๐‘ฅ + 6 ) ( 9 ๐‘ฅ + 6 ) c o s s e c c o t g
  • D โˆ’ 4 5 ( 9 ๐‘ฅ + 6 ) ( 9 ๐‘ฅ + 6 ) c o s s e c c o t g ๏Šจ

Q21:

Determine a primeira derivada da funรงรฃo ๐‘“ ( ๐‘ฅ ) = โˆ’ 2 ( 4 ๐‘ฅ ) c o t g c o s .

  • A โˆ’ 2 4 ๐‘ฅ ( 4 ๐‘ฅ ) s e n c o s s e c c o s ๏Šจ
  • B 8 4 ๐‘ฅ ( 4 ๐‘ฅ ) s e n c o s s e c c o s ๏Šจ
  • C 2 4 ๐‘ฅ ( 4 ๐‘ฅ ) s e n c o s s e c c o s ๏Šจ
  • D โˆ’ 8 4 ๐‘ฅ ( 4 ๐‘ฅ ) s e n c o s s e c c o s ๏Šจ

Q22:

Se ๐‘ฆ = ๏€น ๐‘ฅ ๏… s e n c o s ๏Šฉ , encontre d d ๐‘ฆ ๐‘ฅ .

  • A โˆ’ 3 ๐‘ฅ ๐‘ฅ s e n c o s ๏Šจ
  • B โˆ’ 3 ๐‘ฅ ๏€น ๐‘ฅ ๏… c o s c o s c o s ๏Šจ ๏Šฉ
  • C โˆ’ 3 ๐‘ฅ ๐‘ฅ s e n c o s ๏Šฉ
  • D โˆ’ 3 ๐‘ฅ ๐‘ฅ ๏€น ๐‘ฅ ๏… s e n c o s c o s c o s ๏Šจ ๏Šฉ
  • E 3 ๐‘ฅ ๐‘ฅ ๏€น ๐‘ฅ ๏… s e n c o s c o s c o s ๏Šจ ๏Šฉ

Q23:

Derive ๐‘“ ( ๐‘ฅ ) = ๐‘’ ๐‘ฅ ๏— t g .

  • A ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘ฅ + ๐‘’ ๐‘ฅ t g s e c ๏— ๏Šจ
  • B ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘’ ( ๐‘ฅ + ๐‘ฅ ) ๏— t g s e c
  • C ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘’ ๐‘ฅ ๏— ๏Šจ s e c
  • D ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘’ ๏€น ๐‘ฅ + ๐‘ฅ ๏… ๏— ๏Šจ t g s e c
  • E ๐‘“ โ€ฒ ( ๐‘ฅ ) = ๐‘’ ๏€น ๐‘ฅ โˆ’ ๐‘ฅ ๏… ๏— ๏Šจ t g s e c

Q24:

Sendo ๐‘ฆ = โˆ’ 5 ๏€น ๏€น 2 ๐‘’ + ๐‘ฅ + 4 ๏… ๏… l n s e n ๏Šฎ ๏— , determine d d ๐‘ฆ ๐‘ฅ .

  • A 5 ๏€น 1 6 ๐‘’ + 1 ๏… ๏€น 2 ๐‘’ + ๐‘ฅ + 4 ๏… ( 2 ๐‘’ + ๐‘ฅ + 4 ) ๏Šฎ ๏— ๏Šฎ ๏— ๏Šฎ ๏— c o s s e n
  • B โˆ’ 5 ( 2 ๐‘’ + ๐‘ฅ + 4 ) s e n ๏Šฎ ๏—
  • C โˆ’ 5 ๏€น 2 ๐‘’ + ๐‘ฅ + 4 ๏… ( 2 ๐‘’ + ๐‘ฅ + 4 ) c o s s e n ๏Šฎ ๏— ๏Šฎ ๏—
  • D โˆ’ 5 ๏€น 1 6 ๐‘’ + 1 ๏… ๏€น 2 ๐‘’ + ๐‘ฅ + 4 ๏… ( 2 ๐‘’ + ๐‘ฅ + 4 ) ๏Šฎ ๏— ๏Šฎ ๏— ๏Šฎ ๏— c o s s e n

A Nagwa usa cookies para garantir que vocรช tenha a melhor experiรชncia em nosso site. Saiba mais sobre nossa Polรญtica de privacidade.