Lição de casa da aula: A Recíproca do Teorema de Pitágoras Matemática • 8º Ano

Nesta atividade, nós vamos praticar a utilizar a recíproca do teorema de Pitágoras para determinar se um triângulo é um triângulo retângulo.

Questão 1

Em que pode ser aplicado o recíproco do teorema de Pitágoras?

  • Apara demonstrar que um triângulo é equilátero
  • Bpara demonstrar que um triângulo tem um ângulo reto
  • Cpara determinar os ângulos num triângulo
  • Dpara determinar medidas em triângulos retângulos
  • Epara demonstrar que um triângulo é um triângulo isósceles

Questão 2

Um triângulo tem de lados 36,4, 27,3 e 45,5. Qual é a sua área?

Questão 3

O teorema de Pitágoras afirma que, num triângulo retângulo, a área de um quadrado na hipotenusa é igual à soma das áreas dos quadrados nos catetos. Isso significa que um triângulo onde 𝑐=𝑎+𝑏 é necessariamente um triângulo retângulo?

Vamos supor que 𝐴𝐵𝐶 tem comprimentos laterais 𝑎, 𝑏, e 𝑐, com 𝑐=𝑎+𝑏. Seja 𝐷𝐵𝐶 um triângulo retângulo de comprimentos laterais 𝑎, 𝑏, e 𝑑.

Utilizando o Teorema de Pitágoras, o que você pode dizer sobre a relação entre 𝑎, 𝑏, e 𝑑?

  • A𝑎=𝑑+𝑏
  • B𝑏=𝑎+𝑑
  • C𝑑=𝑎+𝑏

Sabemos que para 𝐴𝐵𝐶, 𝑐=𝑎+𝑏.

O que você conclui sobre 𝑑?

  • A𝑑𝑐
  • B𝑑=𝑐
  • C𝑑>𝑐

É possível construir triângulos diferentes com os mesmos comprimentos dos lados?

  • Anão
  • Bsim

O que você conclui sobre 𝐴𝐵𝐶?

  • AÉ semelhante ao 𝐷𝐵𝐶, então tem um ângulo reto em 𝐴.
  • BÉ congruente ao 𝐷𝐵𝐶, então tem um ângulo reto em 𝐶.
  • CÉ congruente ao 𝐷𝐵𝐶, então tem um ângulo reto em 𝐵.
  • DÉ congruente ao 𝐷𝐵𝐶, então tem um ângulo reto em 𝐴.
  • EÉ semelhante ao 𝐷𝐵𝐶, então tem um ângulo reto em 𝐶.

Questão 4

No triângulo 𝐴𝐵𝐶 o ponto 𝐷 pertence a 𝐵𝐶 e 𝐴𝐷𝐵𝐶, 𝐴𝐶=37,8, 𝐴𝐷=10,08, e 𝐴𝐵=10,76. Determine o comprimento de 𝐵𝐶, arredondado às décimas, e depois determine se o 𝐴𝐵𝐶 é retângulo ou não.

  • A𝐵𝐶=37,5, é triângulo retângulo
  • B𝐵𝐶=40,2, não é triângulo retângulo
  • C𝐵𝐶=35,4, é triângulo retângulo
  • D𝐵𝐶=2,9, não é triângulo retângulo

Questão 5

No triângulo 𝐴𝐵𝐶, seja 𝐷 em 𝐵𝐶 ser o pé da altura de 𝐴. Se 𝐴𝐶=118,9, 𝐴𝐷=69,618, e 𝐵𝐷=50,94, o triângulo 𝐴𝐵𝐶 é um triângulo retângulo em 𝐴?

  • Anão
  • Bsim

Questão 6

No triângulo 𝐴𝐵𝐶, 𝐴𝐷 é perpendicular a 𝐵𝐶, 𝐷 situa-se entre 𝐵 e 𝐶, 𝐵𝐷=8, 𝐶𝐷=2, e 𝐴𝐷=4. O 𝐴𝐵𝐶 é um triângulo retângulo?

  • Anão
  • Bsim

Questão 7

Qual alternativa é igual a (𝐴𝐶)?

  • A(𝐶𝐵)(𝐴𝐵)
  • B(𝐶𝐷)(𝐴𝐷)
  • C𝐶𝐷𝐷𝐵
  • D𝐶𝐵𝐴𝐵

Questão 8

Na figura dada, suponha que 𝐴𝐸=2𝐵𝐶 e 𝐵𝐷=8. Determine 𝐴𝐷 e 𝐸𝐷 e arredonde para o centésimo mais próximo, se necessário.

  • A𝐴𝐷=13,87cm, 𝐸𝐷=25,97cm
  • B𝐴𝐷=8,8cm, 𝐸𝐷=17,74cm
  • C𝐴𝐷=13,87cm, 𝐸𝐷=24,17cm
  • D𝐴𝐷=8,8cm, 𝐸𝐷=21,67cm

Esta lição inclui 10 perguntas adicionais e 90 variações de perguntas adicionais para assinantes.

A Nagwa usa cookies para garantir que você tenha a melhor experiência em nosso site. Saiba mais sobre nossa Política de privacidade.