Vídeo: Resolvendo Simultaneamente um Sistema de Duas Equações Lineares

Resolva o sistema de equações 𝑥 - 𝑦 = 8 e 3𝑥 - 5𝑦 + 10 = 0.

01:21

Transcrição do vídeo

Resolva o sistema de equações, 𝑥 menos 𝑦 é igual a oito e três 𝑥 menos cinco 𝑦 mais dez é igual a zero.

Podemos começar pegando uma dessas equações e isolando uma variável. Vamos em frente e tomar 𝑥 menos 𝑦 é igual a oito, já que é menor. E o que faremos, vamos resolver para 𝑥. Então, vamos adicionar 𝑦 a ambos os lados da equação, o que significa que 𝑥 é igual a 𝑦 mais oito. Então, o que podemos fazer agora é que podemos pegar este 𝑥 igual a 𝑦 mais oito e substituí-lo no 𝑥 da outra equação. Então, vamos pegar essa equação e vamos substituir 𝑥 por 𝑦 mais oito.

Agora podemos usar a propriedade distributiva. Agora que fizemos três vezes 𝑦 para obter três 𝑦 e três vezes oito para obter vinte e quatro, podemos agrupar termos semelhantes. Temos três 𝑦 e menos cinco 𝑦 podemos agrupar, e vinte e quatro e dez podemos agrupar. Agora precisamos subtrair trinta e quatro dos dois lados. E por último, dividir ambos os lados por menos dois.

Portanto, 𝑦 é igual a dezessete. Agora que temos um valor para 𝑦, podemos substituí-lo e resolver para 𝑥. Então, 𝑥 é igual a dezessete mais oito, que é vinte e cinco. Portanto, novamente, 𝑥 é igual a vinte e cinco e 𝑦 é igual a dezessete.

A Nagwa usa cookies para garantir que você tenha a melhor experiência em nosso site. Saiba mais sobre nossa Política de privacidade.