Vídeo: Encontrando a Primeira Derivada de uma Função Composta Utilizando a Regra da Cadeia em um Ponto

Dado que 𝑦 = −6𝑧² − 23 e 𝑧 = −(4/𝑥), determine 𝑑𝑦/𝑑𝑥.

03:19

Transcrição do vídeo

Dado que 𝑦 é igual a menos seis 𝑧 ao quadrado menos 23 e 𝑧 é igual a menos quatro sobre 𝑥, determine 𝑑𝑦 por 𝑑𝑥.

Procuramos a derivada de 𝑦 em relação a 𝑥 e recebemos 𝑦 em termos de outra variável 𝑧 e 𝑧 em termos de 𝑥. Então, isso parece um trabalho para a regra da cadeia, que diz que a derivada de 𝑦 em relação a 𝑥 é igual à derivada de 𝑦 em relação a alguma outra variável 𝑧 vezes a derivada de 𝑧 em relação a 𝑥.

Vamos aplicar a regra da cadeia ao nosso problema. Precisamos encontrar 𝑑𝑦 por 𝑑𝑧. Essa é a derivada de 𝑦 em relação a 𝑧. Felizmente, temos 𝑦 escrito em termos de 𝑧. Então isso é simples. 𝑦 é igual a menos seis 𝑧 ao quadrado menos 23. Derivamos ambos os lados em relação a 𝑧. Usando o fato de que a derivada de uma diferença de funções é a diferença de suas derivadas e usando a fórmula para a derivada de um número vezes uma potência em relação à base dessa potência e também o fato de que a derivada de uma função constante é zero, ficamos com menos 12𝑧.

Tendo encontrado 𝑑𝑦 por 𝑑𝑧, agora passamos para encontrar 𝑑𝑧 por 𝑑𝑥. E para encontrar 𝑑𝑧 por 𝑑𝑥, usamos a relação entre 𝑧 e 𝑥. 𝑧 é igual a menos quatro sobre 𝑥 e podemos escrever isso na notação exponencial como 𝑧 é igual a menos quatro 𝑥 elevado a menos um. Podemos agora aplicar nossa propriedade sobre a derivada de um número vezes a potência de uma variável em relação a essa variável.

Para tornar as coisas mais claras, vamos mudar o 𝑧 na nossa regra para 𝑥. É importante notar que poderíamos substituir 𝑧 por qualquer letra que gostaríamos e ainda assim expressaria a mesma regra. Mas optamos por substituir 𝑧 por 𝑥 porque vamos derivar em relação a 𝑥. Aplicando nossa regra, achamos que 𝑑𝑧 por 𝑑𝑥 seja quatro 𝑥 elevado a menos dois ou se você quiser evitar expoentes negativos quatro sobre 𝑥 ao quadrado.

Usando esta expressão para 𝑑𝑧 por 𝑑𝑥, vemos que 𝑑𝑦 por 𝑑𝑥 é menos 12 vezes 𝑧 vezes quatro sobre 𝑥 ao quadrado. Agora, é apenas um caso de simplificar essa expressão. E como parte da simplificação, percebemos que temos 𝑑𝑦 por 𝑑𝑥 escrito não apenas em termos de 𝑥, mas também em termos da variável 𝑧. E gostaríamos que fosse apenas em termos de 𝑥 se isso for possível. E é possível porque 𝑧 é menos quatro sobre 𝑥.

Substituindo menos quatro sobre 𝑥 em 𝑧, obtemos uma expressão para 𝑑𝑦 por 𝑑𝑥 em termos de 𝑥 sozinho. E podemos simplificar essa expressão com menos 12 vezes menos quatro vezes quatro fazendo 192 no numerador e 𝑥 vezes 𝑥 ao quadrado fazendo 𝑥 ao cubo no denominador.

𝑑𝑦 por 𝑑𝑥 é então 192 sobre 𝑥 ao cubo.

A Nagwa usa cookies para garantir que você tenha a melhor experiência em nosso site. Saiba mais sobre nossa Política de privacidade.