A Nagwa usa cookies para garantir que vocΓͺ tenha a melhor experiΓͺncia em nosso site. Saiba mais sobre nossa PolΓ­tica de privacidade.

Aula: Decompondo P(x)/Q(x) Onde Q(x) Tem um Fator do Segundo Grau Irredutível e Não Repetido

Atividade • 3 Questões

Q1:

Expresse π‘₯ βˆ’ 3 ( π‘₯ + 2 ) ( π‘₯ βˆ’ 1 ) 2 2 em fraçáes parciais.

  • A 5 π‘₯ + 5 3 ( π‘₯ + 2 ) βˆ’ 2 3 ( π‘₯ βˆ’ 1 ) 2
  • B π‘₯ + 1 3 ( π‘₯ + 2 ) βˆ’ 1 3 ( π‘₯ βˆ’ 1 ) 2
  • C 2 3 ( π‘₯ + 2 ) βˆ’ 5 π‘₯ + 5 3 ( π‘₯ βˆ’ 1 ) 2
  • D 5 π‘₯ + 1 3 ( π‘₯ + 2 ) βˆ’ 2 3 ( π‘₯ βˆ’ 1 ) 2
  • E 5 π‘₯ + 5 3 ( π‘₯ + 2 ) βˆ’ 1 3 ( π‘₯ βˆ’ 1 ) 2

Q2:

A expressΓ£o 3 π‘₯ βˆ’ 2 ( π‘₯ + 4 ) ( π‘₯ βˆ’ 3 ) 2 pode ser escrita na forma 𝐴 π‘₯ + 𝐡 π‘₯ + 4 + 𝐢 π‘₯ βˆ’ 3 2 . Determine os valores de 𝐴 𝐡 , e 𝐢 .

  • A 𝐴 = βˆ’ 7 1 3 , 𝐡 = 1 8 1 3 , 𝐢 = 7 1 3
  • B 𝐴 = 1 1 3 , 𝐡 = 1 0 1 3 , 𝐢 = 1 1 3
  • C 𝐴 = βˆ’ 1 1 3 , 𝐡 = 1 0 1 3 , 𝐢 = 1 1 3
  • D 𝐴 = 1 8 1 3 , 𝐡 = βˆ’ 7 1 3 , 𝐢 = 1 1 3
  • E 𝐴 = βˆ’ 7 1 3 , 𝐡 = 1 0 1 3 , 𝐢 = 7 1 3

Q3:

Expresse 3 π‘₯ + 1 ( π‘₯ + 4 ) ( π‘₯ βˆ’ 3 )   em fraçáes parciais.

  • A 2 1 π‘₯ βˆ’ 6 7 1 6 9 ( π‘₯ + 4 ) βˆ’ 2 1 1 6 9 ( π‘₯ βˆ’ 3 ) + 1 0 1 3 ( π‘₯ βˆ’ 3 )  
  • B 2 1 π‘₯ βˆ’ 6 7 1 6 9 ( π‘₯ + 4 ) + 2 1 1 6 9 ( π‘₯ βˆ’ 3 ) + 1 0 1 3 ( π‘₯ βˆ’ 3 )  
  • C 2 1 π‘₯ βˆ’ 6 7 1 6 9 ( π‘₯ + 4 ) βˆ’ 1 0 1 6 9 ( π‘₯ βˆ’ 3 ) + 2 1 1 3 ( π‘₯ βˆ’ 3 )  
  • D 2 1 π‘₯ βˆ’ 6 7 1 6 9 ( π‘₯ + 4 ) + 1 0 1 6 9 ( π‘₯ βˆ’ 3 ) + 2 1 1 3 ( π‘₯ βˆ’ 3 )  
  • E 2 1 π‘₯ βˆ’ 6 7 1 6 9 ( π‘₯ + 4 ) + 1 0 1 3 ( π‘₯ βˆ’ 3 )  
Visualizar