A Nagwa usa cookies para garantir que vocĆŖ tenha a melhor experiĆŖncia em nosso site. Saiba mais sobre nossa PolĆ­tica de privacidade.

Aula: Aplicações da Lei dos Senos e dos Cossenos

Atividade • 18 Questões

Q1:

š“ šµ š¶ š· Ć© um paralelogramo tal que š‘€ Ć© o ponto de interseĆ§Ć£o das diagonais, š“ š¶ = 2 1 , 1 c m , š‘š ( š“ ļ‚— š‘€ š· ) = 8 0 5 4 ā€² āˆ˜ e š‘š ( š¶ ļ‚— š“ šµ ) = 5 3 5 4 ā€² āˆ˜ . Determine a Ć”rea do paralelogramo, apresentando a resposta com duas casas decimais.

Q2:

š“ šµ š¶ Ć© um triĆ¢ngulo tal que š· Ć© o ponto mĆ©dio de šµ š¶ , š‘š ( ļ‚— šµ ) = 2 8 āˆ˜ , š‘š ( ļ‚— š“ ) = 6 9 āˆ˜ e š‘Ž = 2 0 c m . Determine o comprimento de š“ š· , apresentando a resposta com duas casas decimais.

Q3:

š“ šµ š¶ š· Ć© um quadrilĆ”tero tal que š‘š ( š“ ļ‚— šµ š¶ ) = 9 0 āˆ˜ , š‘š ( šµ ļ‚— š“ š· ) = 4 1 āˆ˜ , š“ šµ = š“ š· = 3 0 , 9 c m e šµ š· = šµ š¶ . Determine a Ć”rea de š“ šµ š¶ š· , apresentando a resposta com duas casas decimais.

Q4:

š“ šµ š¶ Ć© um triĆ¢ngulo retĆ¢ngulo em šµ tal que š“ šµ = 4 4 c m e šµ š¶ = 6 8 c m . Determina o comprimento de š“ š¶ , com duas casas decimais, e, em seguida, a amplitude dos Ć¢ngulos š“ e š¶ , em segundos.

  • A š“ š¶ = 8 0 , 9 9 c m , š‘š ( ļ‚— š“ ) = 3 2 5 4 ā€² 1 9 ā€² ā€² āˆ˜ , š‘š ( ļ‚— š¶ ) = 5 7 5 ā€² 4 1 ā€² ā€² āˆ˜
  • B š“ š¶ = 8 0 , 9 9 c m , š‘š ( ļ‚— š“ ) = 5 7 5 ā€² 4 1 ā€² ā€² āˆ˜ , š‘š ( ļ‚— š¶ ) = 3 2 5 4 ā€² 1 9 ā€² ā€² āˆ˜
  • C š“ š¶ = 8 0 , 9 9 c m , š‘š ( ļ‚— š“ ) = 4 9 4 0 ā€² 4 7 ā€² ā€² āˆ˜ , š‘š ( ļ‚— š¶ ) = 5 7 5 ā€² 4 1 ā€² ā€² āˆ˜
  • D š“ š¶ = 5 1 , 8 5 c m , š‘š ( ļ‚— š“ ) = 3 2 5 4 ā€² 1 9 ā€² ā€² āˆ˜ , š‘š ( ļ‚— š¶ ) = 5 7 5 ā€² 4 1 ā€² ā€² āˆ˜

Q5:

Determina a Ć”rea de š“ šµ š¶ š· sendo šø o ponto de interseĆ§Ć£o de š“ š¶ e šµ š· , š“ šø = 5 c m , šø š¶ = 8 , 9 c m , šø š· = 7 , 7 c m e š‘š ( š“ ļ‚— šø šµ ) = 8 0 āˆ˜ . Apresenta a resposta em centĆ­metros quadrados, arredondada Ć s unidades.

Q6:

š“ šµ š¶ Ć© um triĆ¢ngulo retĆ¢ngulo em šµ onde š‘š ( ļ‚— š¶ ) = 6 2 āˆ˜ e š“ š¶ = 1 7 c m . Encontre os comprimentos de š“ šµ e šµ š¶ dando a resposta aproximada a duas casas decimais e a medida de ļ‚— š“ dando a resposta para o grau mais prĆ³ximo.

  • A š“ šµ = 1 5 , 0 1 c m , šµ š¶ = 7 , 9 8 c m , š‘š ( ļ‚— š“ ) = 2 8 āˆ˜
  • B š“ šµ = 7 , 9 8 c m , šµ š¶ = 1 5 , 0 1 c m , š‘š ( ļ‚— š“ ) = 2 8 āˆ˜
  • C š“ šµ = 7 , 9 8 c m , šµ š¶ = 1 5 , 0 1 c m , š‘š ( ļ‚— š“ ) = 3 8 āˆ˜
  • D š“ šµ = 1 5 , 0 1 c m , šµ š¶ = 7 , 9 8 c m , š‘š ( ļ‚— š“ ) = 3 8 āˆ˜

Q7:

š“ šµ š¶ Ć© um triĆ¢ngulo retĆ¢ngulo em šµ tal que š“ šµ = 2 7 c m e š‘š ( ļ‚— š“ ) = 6 3 āˆ˜ . Determine os comprimentos de š“ š¶ e šµ š¶ , apresentando a resposta com duas decimais, e a amplitude do Ć¢ngulo š¶ , apresentando a resposta em graus.

  • A š“ š¶ = 5 9 , 4 7 c m , šµ š¶ = 5 2 , 9 9 c m , š‘š ( ļ‚— š¶ ) = 2 7 āˆ˜
  • B š“ š¶ = 1 3 , 7 6 c m , šµ š¶ = 3 0 , 3 0 c m , š‘š ( ļ‚— š¶ ) = 2 7 āˆ˜
  • C š“ š¶ = 1 3 , 7 6 c m , šµ š¶ = 3 0 , 3 0 c m , š‘š ( ļ‚— š¶ ) = 3 7 āˆ˜
  • D š“ š¶ = 3 0 , 3 0 c m , šµ š¶ = 1 3 , 7 6 c m , š‘š ( ļ‚— š¶ ) = 3 7 āˆ˜

Q8:

š“ šµ š¶ Ć© um triĆ¢ngulo retĆ¢ngulo em šµ onde š‘š ( ļ‚— š¶ ) = 1 , 1 8 8 r a d e š“ š¶ = 1 2 c m . Encontre š‘š ( ļ‚— š“ ) em radianos e os comprimentos š“ šµ e šµ š¶ dando todas as respostas aproximadas para trĆŖs casas decimais.

  • A š‘š ( ļ‚— š“ ) = 0 , 3 8 3 r a d , š“ šµ = 1 1 , 1 3 1 c m , šµ š¶ = 4 , 4 8 2 c m
  • B š‘š ( ļ‚— š“ ) = 0 , 3 8 3 r a d , š“ šµ = 1 1 , 1 3 1 c m , šµ š¶ = 2 9 , 8 0 2 c m
  • C š‘š ( ļ‚— š“ ) = 1 , 1 8 8 r a d , š“ šµ = 1 1 , 1 3 1 c m , šµ š¶ = 1 1 , 1 3 1 c m
  • D š‘š ( ļ‚— š“ ) = 0 , 5 5 7 r a d , š“ šµ = 4 , 4 8 2 c m , šµ š¶ = 1 1 , 1 3 1 c m

Q9:

A medida da aresta de um pentĆ”gono regular š“ šµ š¶ š· šø Ć© 25,81 cm. Determine a medida da diagonal š“ š¶ , apresentando a resposta com duas casas decimais.

Q10:

š“ šµ š¶ Ć© um triĆ¢ngulo onde š‘š ( ļ‚— š“ ) = 3 0 āˆ˜ , a razĆ£o entre š‘ e š‘ Ć© āˆš 3 āˆ¶ 2 e a Ć”rea da circunferĆŖncia circunscrita Ć© 2 2 5 šœ‹ cm2. Encontre o perĆ­metro do triĆ¢ngulo š“ šµ š¶ dando a resposta para o centĆ­metro mais prĆ³ximo.

Q11:

š“ šµ š¶ Ć© um triĆ¢ngulo onde š‘Ž = 2 6 cm, š‘ = 2 2 cm e š‘ = 6 cm. Encontre o raio da circunferĆŖncia dando a resposta a trĆŖs casas decimais.

Q12:

š“ šµ š¶ Ć© um triĆ¢ngulo tal que š‘Ž = 1 9 cm, š‘ = 9 cm e š‘š ( ļ‚— š¶ ) = 4 5 āˆ˜ . Determine o raio da circunferĆŖncia circunscrita, apresentando a resposta com duas casas decimais.

Q13:

š“ šµ š¶ š· Ć© um trapĆ©zio, onde š“ š· ā«½ šµ š¶ , š“ š· = 2 0 c m , š‘š ( ļ‚— šµ ) = 5 5 āˆ˜ , š‘š ( ļ‚— š· ) = 8 0 āˆ˜ , e š‘š ( š“ ļ‚— š¶ šµ ) = 5 2 āˆ˜ . Encontre a Ć”rea do trapĆ©zio dando a resposta ao centĆ­metro quadrado mais prĆ³ximo.

Q14:

š“ šµ š¶ Ć© um triĆ¢ngulo onde s e n s e n s e n š“ 2 5 = šµ 2 9 = š¶ 1 5 . Encontre o maior Ć¢ngulo em š“ šµ š¶ dando a resposta para o grau mais prĆ³ximo.

Q15:

š“ šµ š¶ š· Ć© um quadrilĆ”tero onde š“ šµ = 1 6 c m , š‘š ( š“ ļ‚— š· šµ ) = 4 0 āˆ˜ , š‘š ( š· ļ‚— šµ š“ ) = 1 0 0 āˆ˜ , šµ š¶ = 2 1 c m e š· š¶ = 9 c m . Encontre š‘š ( šµ ļ‚— š¶ š· ) dando a resposta para o segundo mais prĆ³ximo e a Ć”rea de šµ š¶ š· dando a resposta a trĆŖs casas decimais.

  • A 4 5 1 6 ā€² 3 0 ā€² ā€² āˆ˜ , 67,142 cm2
  • B 2 3 3 3 ā€² 2 3 ā€² ā€² āˆ˜ , 37,767 cm2
  • C 6 9 2 3 ā€² 5 8 ā€² ā€² āˆ˜ , 134,283 cm2
  • D 1 1 1 1 0 ā€² 6 ā€² ā€² āˆ˜ , 88,123 cm2

Q16:

š“ šµ š¶ š· Ć© um quadrilĆ”tero onde š“ šµ = 1 4 c m , š‘š ( š“ ļ‚— š· šµ ) = 7 0 āˆ˜ , š‘š ( š· ļ‚— šµ š“ ) = 4 0 āˆ˜ , šµ š¶ = 2 6 c m e š· š¶ = 2 7 c m . Encontre š‘š ( šµ ļ‚— š¶ š· ) dando a resposta para o segundo mais prĆ³ximo e a Ć”rea de šµ š¶ š· dando a resposta a trĆŖs casas decimais.

  • A 3 0 3 3 ā€² 3 0 ā€² ā€² āˆ˜ , 178,454 cm2
  • B 7 8 4 0 ā€² 1 9 ā€² ā€² āˆ˜ , 344,162 cm2
  • C 6 4 2 9 ā€² 5 0 ā€² ā€² āˆ˜ , 356,909 cm2
  • D 7 0 4 6 ā€² 1 1 ā€² ā€² āˆ˜ , 331,415 cm2

Q17:

š“ šµ š¶ š· Ć© um quadrilĆ”tero onde š“ šµ = 7 c m , š‘š ( š“ ļ‚— š· šµ ) = 6 1 āˆ˜ , š‘š ( š· ļ‚— šµ š“ ) = 5 8 āˆ˜ , šµ š¶ = 2 4 c m e š· š¶ = 1 9 c m . Encontre š‘š ( šµ ļ‚— š¶ š· ) dando a resposta para o segundo mais prĆ³ximo e a Ć”rea de šµ š¶ š· dando a resposta a trĆŖs casas decimais.

  • A 1 3 1 0 ā€² 2 5 ā€² ā€² āˆ˜ , 51,963 cm2
  • B 3 8 1 2 ā€² 4 8 ā€² ā€² āˆ˜ , 141,038 cm2
  • C 6 0 5 2 ā€² 0 ā€² ā€² āˆ˜ , 103,923 cm2
  • D 1 2 8 3 6 ā€² 4 8 ā€² ā€² āˆ˜ , 178,154 cm2

Q18:

š“ šµ š¶ Ć© um triĆ¢ngulo isĆ³sceles onde š“ šµ = š“ š¶ = 4 7 c m e šµ š¶ = 1 0 c m . Encontre os Ć¢ngulos no triĆ¢ngulo dando a resposta ao segundo mais prĆ³ximo.

  • A š‘š ( ļ‚— š“ ) = 1 2 1 2 ā€² 5 0 ā€² ā€² , š‘š ( ļ‚— šµ ) = 8 3 5 3 ā€² 3 5 ā€² ā€² , š‘š ( ļ‚— š¶ ) = 8 3 5 3 ā€² 3 5 ā€² ā€² āˆ˜ āˆ˜ āˆ˜
  • B š‘š ( ļ‚— š“ ) = 1 6 7 4 7 ā€² 1 0 ā€² ā€² , š‘š ( ļ‚— šµ ) = 6 6 ā€² 2 5 ā€² ā€² , š‘š ( ļ‚— š¶ ) = 6 6 ā€² 2 5 ā€² ā€² āˆ˜ āˆ˜ āˆ˜
  • C š‘š ( ļ‚— š“ ) = 1 2 8 ā€² 4 2 ā€² ā€² , š‘š ( ļ‚— šµ ) = 8 3 5 5 ā€² 3 9 ā€² ā€² , š‘š ( ļ‚— š¶ ) = 8 3 5 5 ā€² 3 9 ā€² ā€² āˆ˜ āˆ˜ āˆ˜
  • D š‘š ( ļ‚— š“ ) = 1 6 7 5 1 ā€² 1 8 ā€² ā€² , š‘š ( ļ‚— šµ ) = 6 4 ā€² 2 1 ā€² ā€² , š‘š ( ļ‚— š¶ ) = 6 4 ā€² 2 1 ā€² ā€² āˆ˜ āˆ˜ āˆ˜
Visualizar