Feuille d'activités : Multiplication de matrices pour résoudre des problèmes réels

Dans cette feuille d’activités, nous nous entraînerons à écrire, exprimer et résoudre des applications réelles à l'aide de la multiplication matricielle et d'autres opérations matricielles.

Q1:

Le tableau ci-dessous indique le nombre de chambres selon leur type dans trois hôtels appartenant à une entreprise. Si une chambre simple coûte 160 LE par nuit, qu'une chambre double coûte 430 LE par nuit, et qu'une suite coûte 740 LE par nuit, détermine le revenu quotidien de l'entreprise lorsque toutes les chambres sont occupées.

Hôtel Chambre simple Chambre double Suite
Hôtel 1 45 74 15
Hôtel 2 48 74 19
Hôtel 3 49 94 10
  • A 2 2 0 7 2 0 L E
  • B 1 3 2 3 4 0 L E
  • C 2 1 6 1 8 0 L E
  • D 1 5 9 3 4 0 L E

Q2:

Le poids, en kilogrammes, de viande, de légumes et de fruits utilisés pour préparer le déjeuner et le dîner dans un restaurant est indiqué dans le tableau ci-dessous. Le restaurant achète un one kilogramme de viande pour 7 8 l i v r e s é g y p t i e n n e s , un one kilogramme de légumes pour 5 l i v r e s é g y p t i e n n e s , et un one kilogramme de fruits pour 4 l i v r e s é g y p t i e n n e s . Utilise la multiplication matricielle pour calculer le coût total des ingrédients utilisés pour préparer chaque repas.

Repas Viande Légumes Fruits
Déjeuner 180 120 130
Dîner 110 50 70
  • ALe coût total des ingrédients utilisés pour le déjeuner était de 1 1 4 6 0 l i v r e s é g y p t i e n n e s , et le coût total des ingrédients utilisés pour préparer le dîner était de 6 1 5 0 l i v r e s é g y p t i e n n e s .
  • BLe coût total des ingrédients utilisés pour le déjeuner était de 1 1 5 2 0 l i v r e s é g y p t i e n n e s , et le coût total des ingrédients utilisés pour préparer le dîner était de 6 2 1 0 l i v r e s é g y p t i e n n e s .
  • CLe coût total des ingrédients utilisés pour le déjeuner était de 1 5 1 7 0 l i v r e s é g y p t i e n n e s , et le coût total des ingrédients utilisés pour préparer le dîner était de 9 1 3 0 l i v r e s é g y p t i e n n e s .
  • DLe coût total des ingrédients utilisés pour le déjeuner était de 1 5 1 6 0 l i v r e s é g y p t i e n n e s , et le coût total des ingrédients utilisés pour préparer le dîner était de 9 1 1 0 l i v r e s é g y p t i e n n e s .

Q3:

Une entreprise possède deux bureaux, notés 𝐴 et 𝐵 , dans une ville atteinte d'une épidémie de grippe.

Il y a 120 hommes et 80 femmes dans le bureau 𝐴 , 60 hommes et 100 femmes employés dans le bureau 𝐵 . Représente cette information sous la forme d'une matrice 𝑀 dont les lignes représentent les bureaux 𝐴 et 𝐵 , dans cet ordre, et dont les colonnes représentent le nombre d'employés masculins et féminins, dans cet ordre.

  • A 6 0 1 0 0 1 2 0 8 0
  • B 1 2 0 6 0 8 0 1 0 0
  • C 8 0 1 2 0 1 0 0 6 0
  • D 1 2 0 8 0 6 0 1 0 0
  • E 6 0 1 0 0 8 0 1 2 0

Actuellement, environ 1 5 % des employés de 𝐴 et 2 5 % de ceux de 𝐵 ne sont pas infectés, 3 5 % des employés de 𝐴 et 3 0 % de ceux de 𝐵 sont malades, et 5 0 % des employés de 𝐴 et 4 5 % de ceux de 𝐵 sont porteurs du virus. Représente cette information sous forme de matrice 𝑁 dont les colonnes, dans l'ordre, représentent 𝐴 et 𝐵 et dont les lignes, dans l’ordre, représentent la proportion d’employés non infectés, malades ou porteurs du virus.

  • A 0 , 1 5 0 , 2 5 0 , 3 5 0 , 3 0 , 5 0 , 4 5
  • B 0 , 1 5 0 , 3 5 0 , 5 0 , 2 5 0 , 3 0 , 4 5
  • C 1 5 3 5 5 0 2 5 3 0 4 5
  • D 1 5 2 5 3 5 3 0 5 0 4 5
  • E 0 , 1 5 0 , 3 5 0 , 5 0 , 2 5 0 , 3 0 , 4 5

En supposant que la proportion d'employés non infectés, malades et porteurs dans chaque bureau soit la même pour les deux sexes, laquelle des matrices suivantes représente le nombre total d'employés hommes et femmes en bonne santé, malades ou porteurs du virus?

  • A 𝑀 𝑁
  • B 𝑀 𝑁
  • C 𝑁 𝑀
  • D 𝑁 𝑀
  • E 1 0 0 𝑁 𝑀

Nagwa utilise des cookies pour vous garantir la meilleure expérience sur notre site. En savoir plus sur notre Politique de Confidentialité.