Feuille d'activités de la leçon : Règle du produit Mathématiques

Dans cette feuille d'activités, nous nous entraînerons à déterminer la dérivée d'une fonction en utilisant la règle du produit.

Q1:

ร‰value ๐‘‘๐‘”(๐‘ฅ)๐‘‘๐‘ฅ en ๐‘ฅ=โˆ’2 lorsque ๐‘”(๐‘ฅ)=(4๐‘ฅโˆ’1)๏€นโˆ’3๐‘ฅ+7๏…๏Šฉ.

Q2:

Dรฉtermine lโ€™expression de la dรฉrivรฉe de la fonction dรฉfinie par ๐‘“(๐‘ฅ)=2๐‘ฅ(๐‘ฅโˆ’3)(๐‘ฅโˆ’1)(๐‘ฅ+2) en le point de coordonnรฉes (โˆ’1,โˆ’16).

Q3:

ร‰value la dรฉrivรฉe de la fonction dรฉfinie par ๐‘“(๐‘ฅ)=๏€น9๐‘ฅโˆ’๐‘ฅโˆ’7๏…๏€น7๐‘ฅโˆ’8๐‘ฅโˆ’7๏…๏Šจ๏Šจ en ๐‘ฅ=โˆ’1.

Q4:

Dรฉtermine lโ€™expression de la dรฉrivรฉe de la fonction dรฉfinie par ๐‘“(๐‘ฅ)=๏€น2๐‘ฅ+๐‘ฅโˆ’5๏…๏€ผ๐‘ฅ+3โˆš๐‘ฅโˆ’3๐‘ฅ๏ˆ๏Šช๏Šจ.

  • A12๐‘ฅ+27๐‘ฅโˆš๐‘ฅโˆ’15๐‘ฅ+92โˆš๐‘ฅโˆ’10๐‘ฅโˆ’152โˆš๐‘ฅโˆ’15๐‘ฅ๏Šซ๏Šฉ๏Šจ๏Šจ
  • B8๐‘ฅ+27โˆš๐‘ฅโˆ’18๐‘ฅโˆ’15๐‘ฅ+๐‘ฅโˆ’15โˆš๐‘ฅ๏Šช๏Šซ๏Šฉ๏Šฉ
  • C8๐‘ฅ+27โˆš๐‘ฅโˆ’18๐‘ฅโˆ’15๐‘ฅ+๐‘ฅโˆ’15โˆš๐‘ฅ๏Šซ๏Šฏ๏Šช๏Šฉ๏Šฉ๏Šญ
  • D8๐‘ฅ+27โˆš๐‘ฅโˆ’18๐‘ฅโˆ’15๐‘ฅ+๐‘ฅโˆ’15โˆš๐‘ฅ๏Šซ๏Šญ๏Šช๏Šจ๏Šจ๏Šซ

Q5:

Dรฉtermine la valeur de la dรฉrivรฉe de la fonction dรฉfinie par ๐‘“(๐‘ฅ)=๏€น๐‘ฅ+4๏…๏€บ3๐‘ฅโˆš๐‘ฅโˆ’7๏†๏€บ3๐‘ฅโˆš๐‘ฅ+7๏†๏Šฎ en ๐‘ฅ=โˆ’1.

Q6:

On pose ๐‘”(๐‘ฅ)=โˆ’3๐‘“(๐‘ฅ)[โ„Ž(๐‘ฅ)โˆ’1] avec ๐‘“โ€ฒ(โˆ’4)=โˆ’1, โ„Žโ€ฒ(โˆ’4)=โˆ’9, โ„Ž(โˆ’4)=โˆ’6 et ๐‘“(โˆ’4)=โˆ’1. Dรฉtermine ๐‘”โ€ฒ(โˆ’4).

Q7:

Supposons que ๐‘“ est dรฉrivable. Quelle est la dรฉrivรฉe de ๐‘ฅ๐‘“(๐‘ฅ)๏Šฉโ€‰?

  • A๐‘ฅ๐‘“(๐‘ฅ)+๐‘ฅ๐‘“โ€ฒ(๐‘ฅ)๏Šจ๏Šฉ
  • B3๐‘ฅ๐‘“โ€ฒ(๐‘ฅ)๏Šจ
  • C๐‘ฅ๐‘“โ€ฒ(๐‘ฅ)๏Šจ
  • D3๐‘ฅ+๐‘“โ€ฒ(๐‘ฅ)๏Šจ
  • E3๐‘ฅ๐‘“(๐‘ฅ)+๐‘ฅ๐‘“โ€ฒ(๐‘ฅ)๏Šจ๏Šฉ

Q8:

La rรจgle du produit donne (๐‘“๐‘”)=๐‘“๐‘”+๐‘“๐‘”๏Ž˜๏Ž˜๏Ž˜. Utilise-la pour obtenir une formule de la dรฉrivรฉe de (๐‘“๐‘”โ„Ž)๏Ž˜.

  • A๐‘“๐‘”โ„Ž+๐‘“๐‘”โ„Ž๏Ž˜๏Ž˜
  • B๐‘“๐‘”โ„Žโˆ’๐‘“๐‘”โ„Žโˆ’๐‘“๐‘”โ„Ž๏Ž˜๏Ž˜๏Ž˜
  • C๐‘“๐‘”โ„Ž+๐‘“๐‘”โ„Ž๏Ž˜๏Ž˜๏Ž˜
  • D๐‘“๐‘”โ„Ž+๐‘“๐‘”โ„Ž+๐‘“๐‘”โ„Ž๏Ž˜๏Ž˜
  • E๐‘“๐‘”โ„Ž+๐‘“๐‘”โ„Ž+๐‘“๐‘”โ„Ž๏Ž˜๏Ž˜๏Ž˜

Q9:

Supposons que ๐‘“(2)=3,๐‘”(2)=5,๐‘“โ€ฒ(2)=โˆ’1 et ๐‘”โ€ฒ(2)=6. Trouve la valeur de (๐‘“(๐‘ฅ)๐‘”(๐‘ฅ))โ€ฒโˆ’๐‘“โ€ฒ(๐‘ฅ)๐‘”โ€ฒ(๐‘ฅ) en ๐‘ฅ=2.

Q10:

Dรฉtermine lโ€™expression de la dรฉrivรฉe premiรจre de la fonction dรฉfinie par ๐‘ฆ(๐‘ฅ)=๏€บ7๐‘ฅโˆ’โˆš๐‘ฅ๏†๏€บโˆ’๐‘ฅ+7โˆš๐‘ฅ๏†๏Šจ๏Šจ.

  • Aโˆ’21๐‘ฅ+25โˆš๐‘ฅโˆ’7๏Šฉ
  • Bโˆ’7๐‘ฅ+50๐‘ฅโˆš๐‘ฅโˆ’7๏Šฉ
  • Cโˆ’28๐‘ฅ+125โˆš๐‘ฅโˆ’7๐‘ฅ๏Šซ๏Šญ๏Šจ
  • Dโˆ’28๐‘ฅ+125๐‘ฅโˆš๐‘ฅโˆ’7๏Šฉ

Cette leçon comprend 19 questions additionnelles et 171 variantes de questions additionnelles pour les abonnés.

Nagwa utilise des cookies pour vous garantir la meilleure expรฉrience sur notre site. En savoir plus sur notre Politique de Confidentialitรฉ.