Vidéo question :: L’origine de la couleur de la flamme dans les tests de flamme | Nagwa Vidéo question :: L’origine de la couleur de la flamme dans les tests de flamme | Nagwa

Vidéo question :: L’origine de la couleur de la flamme dans les tests de flamme Chimie • Deuxième secondaire

Quand un sel est placé dans la flamme d’un bec Bunsen, la flamme change de couleur. Quelle caractéristique des ions métalliques du sel détermine la couleur de la flamme dans cette expérience ? [A] La réactivité à l’oxygène [B] L’énergie d’atomisation [C] L’énergie de liaison [D] La variation des niveaux d’énergie nucléaire [E] La variation des niveaux niveaux d’énergie des électrons

03:36

Transcription de la vidéo

Quand un sel est placé dans la flamme d’un bec Bunsen, la flamme change de couleur. Quelle caractéristique des ions métalliques du sel détermine la couleur de la flamme dans cette expérience ? (A) La réactivité à l’oxygène, (B) L’énergie d’atomisation, (C) L’énergie de liaison, (D) La variation des niveaux d’énergie nucléaire, ou (E) La variation des niveaux d’énergie des électrons.

Le processus de chauffage d’un ion métallique dans un brûleur Bunsen est appelé test de flamme. En observant la couleur de la flamme, nous pouvons identifier l’ion métallique présent dans l’échantillon car différents ions produisent différentes couleurs de flamme. Lorsque nous chauffons les ions métalliques, ils absorbent de l’énergie puis la libèrent sous forme de lumière colorée. Mais que se passe-t-il spécifiquement dans l’atome pour provoquer la libération d’énergie ?

Les électrons d’un ion de lithium ordinaire sont agencés de cette façon, avec ses deux électrons sur le même niveau d’énergie. Lorsqu’un ion est chauffé, ses électrons peuvent absorber de l’énergie thermique et passer à un niveau d’énergie supérieur. Puis, en revenant à leurs niveaux d’énergie initiaux, les électrons libèrent une quantité spécifique d’énergie sous la forme d’un photon avec une longueur d’onde spécifique. Puisque les électrons sautent et retombent entre les mêmes niveaux d’énergie, à chaque fois que cet ion en particulier est chauffé, des photons de mêmes longueurs d’ondes spécifiques sont libérés, et une flamme de la même couleur est produite.

Remarquez qu’il n’y pas qu’une seule longueur d’onde de lumière qui est émise ; un spectre caractéristique de plusieurs longueurs d’ondes différentes est émis. Ce spectre est visible lors de la visualisation de la flamme à travers d’un spectroscope.

Alors, laquelle des réponses ci-dessous correspond le mieux à cette explication ? La bonne réponse est (E) la variation des niveaux d’énergie des électrons. Puisque l’énergie lumineuse est émise lorsqu’un électron revient d’un niveau d’énergie supérieur à un niveau inférieur, la différence d’énergie entre les niveaux d’énergie des électrons détermine la couleur. Des niveaux d’énergie plus espacés se traduiront par des photons d’énergie supérieure, avec des longueurs d’onde courtes qui apparaîtront en bleu ou en violet. Alors que des niveaux d’énergie moins espacés donneront des photons de faible énergie, avec de longues longueurs d’onde qui apparaîtront en rouge.

Confirmons notre réponse en examinant les autres choix. Puisque nous avons affaire au mouvement des électrons, et non au mouvement des protons et des neutrons, il est incorrect de dire que ce phénomène a à voir avec les niveaux d’énergie nucléaire.

L’énergie de liaison est définie comme l’énergie nécessaire pour rompre les liaisons d’une mole d’une substance. Nous pouvons éliminer l’énergie de liaison comme possible réponse car, dans les tests de flamme, notre ion métallique peut être dissous dans de l’acide chlorhydrique avant de brûler. Puisque l’ion brûle de la même couleur, qu’il soit lié dans un sel ou dissous dans un acide, l’énergie de sa liaison avec un autre élément est sans importance pour la formation de la flamme et la couleur qui en résulte.

L’énergie d’atomisation est définie comme l’énergie nécessaire pour former une mole de gaz d’une substance. Nous pouvons également éliminer cette réponse. Bien que notre flamme soit chaude, elle n’est pas assez chaude pour transformer les métaux en gaz. La couleur de la flamme est due au mouvement des électrons, et non à un changement d’état de l’ion métallique.

Enfin, la réactivité à l’oxygène est également une réponse incorrecte. De nombreux métaux réagissent avec l’oxygène pour former des oxydes, comme le fer réagit avec l’air pour former de la rouille. Mais c’est un processus distinct qui ne se produit pas pendant le test de flamme.

Toutes ces réponses sont liées d’une certaine manière à l’énergie, mais une seule spécifiquement applicable dans les tests de flamme. La caractéristique qui détermine la couleur de la flamme est (E) La variation des niveaux d’énergie des électrons.

Rejoindre Nagwa Classes

Assistez à des séances en direct sur Nagwa Classes pour stimuler votre apprentissage avec l’aide et les conseils d’un enseignant expert !

  • Séances interactives
  • Chat et messagerie électronique
  • Questions d’examen réalistes

Nagwa utilise des cookies pour vous garantir la meilleure expérience sur notre site web. Apprenez-en plus à propos de notre Politique de confidentialité