Le portail a été désactivé. Veuillez contacter l'administrateur de votre portail.

Vidéo de question : Dériver les fonctions trigonométriques Mathématiques

Déterminez 𝑑𝑦 / 𝑑𝑥, sachant que 𝑦 = 6 sin 3𝑥.

02:21

Transcription de vidéo

Déterminez 𝑑𝑦 par 𝑑𝑥, sachant que 𝑦 est égal à six sinus trois 𝑥.

Nous cherchons alors à dériver six sinus trois 𝑥 par rapport à 𝑥. Pour trouver cela, nous devrons utiliser le fait que la dérivée de sinus 𝑥 par rapport à 𝑥 est cosinus 𝑥. Ceci est valable avec 𝑥 en radians. En utilisant le fait que la dérivée d’un nombre fois une fonction est ce nombre fois la dérivée de la fonction, nous pouvons voir que 𝑑 sur 𝑑𝑥 de six sinus 𝑥 vaut six cosinus 𝑥. Cependant, nous cherchons la dérivée de six sinus trois 𝑥. Comment pouvons-nous la trouver ? Bien, nous devons utiliser la règle de derivation en chaîne.

Pour faciliter l’application de la règle de derivation en chaîne, nous allons définir une nouvelle variable 𝑧 égale trois 𝑥. Ensuite, puisque 𝑦 est égal à six sinus trois 𝑥 tel qu’on nous le dit dans la question, 𝑦 est égal à six sinus 𝑧. Maintenant, comment cela nous aide-t-il ? Bien, la règle de derivation en chaîne nous dit que la dérivée de 𝑦 par rapport à 𝑥 est la dérivée de 𝑦 par rapport à 𝑧 fois la dérivée de 𝑧 par rapport à 𝑥.

Appliquons cela. Nous devons trouver 𝑑𝑦 sur 𝑑𝑧. Ainsi, nous utilisons l’expression de 𝑦 en fonction de 𝑧 : 𝑦 est égal à six sinus 𝑧. Puisque la dérivée par rapport à 𝑥 de six sinus 𝑥 est six cosinus 𝑥, la dérivée par rapport à 𝑧 de six sinus 𝑧 est six cosinus 𝑧.

Maintenant, nous avons juste besoin de trouver 𝑑𝑧 sur 𝑑𝑥. Puisque 𝑧 est égal à trois 𝑥, 𝑑𝑧 sur 𝑑𝑥 est égal à 𝑑 sur 𝑑𝑥 de trois 𝑥, ce qui donne trois. Ainsi, en tout, 𝑑𝑦 sur 𝑑𝑥 est six cosinus 𝑧 fois trois, soit 18 cosinus 𝑧. Nous ne voulons pas que 𝑑𝑦 sur 𝑑𝑥 soit écrit en fonction d’une autre variable 𝑧. Nous aimerions que cette dérivée soit écrite en fonction de 𝑥 si possible. En utilisant le fait que 𝑧 vaut trois 𝑥, nous voyons que 𝑑𝑦 sur 𝑑𝑥 vaut 18 cosinus trois 𝑥. Voici notre réponse finale.

Si nous savons que la dérivée de sinus 𝑥 par rapport à 𝑥 vaut cosinus 𝑥, alors nous pouvons trouver la dérivée de nombreuses expressions impliquant sinus 𝑥 en utilisant la règle de derivation en chaîne.

Nagwa utilise des cookies pour vous garantir la meilleure expérience sur notre site. En savoir plus sur notre Politique de Confidentialité.