Question Video: Déterminer les valeurs en lesquelles la fonction tangente n’est pas définie | Nagwa Question Video: Déterminer les valeurs en lesquelles la fonction tangente n’est pas définie | Nagwa

Question Video: Déterminer les valeurs en lesquelles la fonction tangente n’est pas définie Mathématiques • First Year of Secondary School

Déterminez les valeurs de 𝜃 en radians pour lesquelles la fonction 𝑓(𝜃)=tan (3𝜃) n’est pas définie.

01:33

Video Transcript

Déterminez les valeurs de thêta en radians pour lesquelles la fonction 𝑓 de thêta égale tangente de 3 thêta n’est pas définie.

Pour répondre à cette question, on commence par considérer l’ensemble de définition de la fonction tangente. Lorsqu’on travaille en radians, l’ensemble de définition de la fonction 𝑔 de thêta égale à tangente thêta est l’ensemble des réels, à l’exception de thêta égale pi sur deux plus 𝑛 pi, où 𝑛 est un entier. Soit pi sur deux plus n’importe quel multiple entier de pi. Autrement dit, la fonction tangente est indéfinie lorsque thêta est égal à l’une de ces valeurs, donc quand thêta est égal à pi sur deux plus un multiple entier de pi. On peut rappeler que ces valeurs de thêta correspondent aux positions des asymptotes verticales sur le graphe de la fonction tangente thêta.

Cependant, dans cette question, la fonction qui nous intéresse est la fonction 𝑓 de thêta égale à la tangente de trois thêta. Par conséquent, pour déterminer les valeurs pour lesquelles cette fonction est indéfinie, on doit trouver les valeurs de trois thêta égales à l’une de ces valeurs. Donc on doit résoudre l’équation trois thêta égale pi sur deux plus 𝑛 pi, où 𝑛 est un entier. En divisant par trois des deux côtés de l’équation, on constate que 𝑓 de thêta est indéfinie en thêta égale pi sur six plus 𝑛 pi sur trois. Donc on a résolu le problème. La fonction 𝑓 de thêta égale à tangente de trois thêta est indéfinie quand thêta est égal à pi sur six plus 𝑛 pi sur trois, pour tout entier 𝑛.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy