Vidéo question :: Déterminer les termes d’une suite en fonction de son terme général | Nagwa Vidéo question :: Déterminer les termes d’une suite en fonction de son terme général | Nagwa

Vidéo question :: Déterminer les termes d’une suite en fonction de son terme général Mathématiques • Deuxième année secondaire

Laquelle des réponses suivantes représente les cinq premiers termes de la suite de terme general 𝑎_(𝑛) = −99 −17/√(𝑛) et où 𝑛 ≥ 1? [A] −82, −181/2, -280/3, −379/4, −478/5,... [B] −116, −215/2, −314/3, −413/4, −512/5,... [C] −116, −99 + (17√2)/2, −99 + (17√3)/3, −215/2, −99 + (17√5)/5,... [D] −116, −99 − (17√2)/2, −99 - (17√3)/3, −215/2, −99 − (17√5)/5,...

02:26

Transcription de la vidéo

Laquelle des réponses suivantes représente les cinq premiers termes de la suite de terme general 𝑎 𝑛 est égal à moins 99 moins 17 sur la racine carrée de 𝑛 et où 𝑛 doit être supérieur à un?

On nous donne le terme général d’une suite. On nous dit que 𝑎 𝑛 est égal à moins 99 moins 17 sur la racine carrée de 𝑛 et que 𝑛 doit être supérieur à un. Lorsque nous avons affaire à des suites, la valeur de 𝑛 représente le rang du terme. Cela signifie que lorsque 𝑛 est égal à un, nous calculons le premier terme de la suite.

𝑎 un est égal à moins 99 moins 17 sur la racine carrée de un. La racine carrée de un est un. 17 sur un est égal à 17. Puis, moins 99 moins 17 est égal à moins 116. Le premier terme doit être alors moins 116. Nous pouvons éliminer l’option A.

Pour continuer avec ce raisonnement, nous allons trouver 𝑎 deux, qui est le deuxième terme. Nous insérons deux pour notre valeur 𝑛 et nous obtenons moins 99 moins 17 sur la racine carrée de deux. Si nous voulons rationaliser pour enlever la racine carrée de deux du dénominateur, nous pouvons multiplier la fraction 17 sur la racine carrée de deux par la racine carrée de deux sur deux. Le moins 99 ne change pas. 17 fois la racine carrée de deux s’écrit comme cela. Cependant, la racine carrée de deux fois la racine carrée de deux est égale à deux. Nous n’avons plus la racine carrée au dénominateur.

Notre deuxième terme est alors moins 99 moins 17 fois la racine carrée de deux sur deux, ce qui élimine l’option B. Si nous regardons de près, cela élimine également l’option C. L’option C dit que le deuxième terme est moins 99 plus 17 fois la racine carrée de deux sur deux. Cependant, nous savons que c’est moins. Nous voyons cela dans l’option D.

Ainsi, nous disons que les cinq premiers termes de cette suite seront moins 116. Moins 99 moins 17 fois la racine carrée de deux sur deux. Moins 99 moins 17 fois la racine carrée de trois sur trois. Moins 215 sur deux. Moins 99 moins 17 fois la racine carrée de cinq sur cinq. Et ainsi de suite. La clé ici était de reconnaître que la valeur 𝑛 représente le rang du terme et de la remplacer pour les termes que vous recherchiez.

Rejoindre Nagwa Classes

Assistez à des séances en direct sur Nagwa Classes pour stimuler votre apprentissage avec l’aide et les conseils d’un enseignant expert !

  • Séances interactives
  • Chat et messagerie électronique
  • Questions d’examen réalistes

Nagwa utilise des cookies pour vous garantir la meilleure expérience sur notre site web. Apprenez-en plus à propos de notre Politique de confidentialité