Hoja de actividades de la lección: El equilibrio de un cuerpo en un plano horizontal con rozamiento Matemáticas

En esta hoja de actividades, vamos a practicar cómo resolver problemas de equilibrio de un cuerpo en un plano horizontal con rozamiento.

P1:

Si el coeficiente de rozamiento estático entre un cuerpo y un plano es 34, ¿cuánto mide el ángulo de rozamiento? Redondea la respuesta al minuto más cercano.

  • A2325
  • B6420
  • C2540
  • D6635

P2:

Un cuerpo de 8.5 newtons de peso descansa en un plano horizontal. Una fuerza horizontal actúa sobre él haciendo que esté a punto de moverse sobre el plano. Dado que la fuerza de rozamiento era de 3.4 newtons, halla el coeficiente de rozamiento estático.

P3:

Un cuerpo que pesa 5 N reposa en un plano horizontal. El coeficiente de fricción entre el cuerpo y el plano es 34. Sabiendo que 𝐹 es la magnitud de la fuerza de fricción medida en newtons, exprese el rango de sus posibles valores como un intervalo.

  • A154,
  • B34,154
  • C34,5
  • D0,34
  • E0,154

P4:

Un cuerpo descansa sobre un plano horizontal. El coeficiente de rozamiento entre el cuerpo y el plano vale 0.2 y la fuerza de rozamiento límite que actúa sobre el cuerpo es de 80 N. Si 𝑅 es la resultante de la fuerza de rozamiento y la fuerza de reacción normal, halla el módulo de 𝑅.

  • A80 N
  • B8026 N
  • C400 N
  • D4026 N

P5:

Un cuerpo que pesa 25.5 N descansa sobre un plano horizontal rugoso. Una fuerza horizontal actúa sobre el cuerpo haciendo que esté a punto de moverse. Sabiendo que el coeficiente de fricción entre el cuerpo y el plano es 317, determina la magnitud de la fuerza.

P6:

Un cuerpo de 45 N de peso reposa sobre un plano horizontal. Si una fuerza horizontal de 11 N actuara sobre el cuerpo, el cuerpo estaría a punto de moverse. En lugar de eso, una fuerza, cuya línea de acción está inclinada con respecto a la horizontal en un ángulo de 60, actúa sobre el cuerpo. Dado que el cuerpo está a punto de moverse, halla la magnitud de esta fuerza , y redondéala a dos cifras decimales si es necesario.

P7:

Un cuerpo con un peso de 47 N se halla en un plano horizontal con rozamiento. Dos fuerzas horizontales de 1 N y 4 N actúan en el cuerpo haciendo que esté a punto de moverse. Sabiendo que el ángulo entre las líneas de acción de las dos fuerzas mide 60, calcula el coeficiente de rozamiento estático entre el cuerpo y el plano.

  • A1947
  • B22147
  • C2147
  • D1347

P8:

La figura muestra un cuerpo de 30 kg de masa que está siendo empujado contra una pared vertical con rozamiento por una fuerza horizontal F. Sabiendo que el coeficiente de fricción estático entre el cuerpo y la pared es 56, determina la fuerza horizontal mínima F que hará que el cuerpo esté en equilibrio.

P9:

Un cuerpo de 79 N de peso descansa sobre una mesa horizontal con rozamiento. Está fijado, por una cuerda ligera e inextensible que pasa por una polea sin rozamiento sujeta al extremo de la mesa, a un peso de 41 N que cuelga libremente en vertical por debajo de la polea. En estas condiciones, el sistema está a punto de moverse. Seguidamente, el cuerpo se sujeta, por una segunda cuerda inextensible que pasa por una segunda polea fija al extremo opuesto de la mesa, a un segundo cuerpo de peso 𝑊 N que cuelga libremente en vertical por debajo de la polea. Calcula el peso 𝑊 que hará que el cuerpo esté a punto de moverse.

P10:

Un cuerpo de 30 N de peso reposa en una superficie plana y horizontal. Dos fuerzas horizontales, 𝐹 y 𝐹, actúan sobre el cuerpo de modo que 𝐹 hace un ángulo de 120 con 𝐹. Dado que 𝐹=17N y el ángulo de rozamiento de la superficie es 𝜆=30, calcula el valor mínimo de 𝐹 necesario para hacer que el cuerpo se mueva y el ángulo 𝜃 entre su dirección de movimiento y 𝐹 cuando el cuerpo comienza a moverse. Redondea la magnitud de la fuerza a las centésimas y la amplitud del ángulo a las unidades.

  • A𝐹=17.62, 𝜃=58
  • B𝐹=16.33, 𝜃=58
  • C𝐹=27.51, 𝜃=38
  • D𝐹=35.25, 𝜃=91
  • E𝐹=17.62, 𝜃=62

Practice Means Progress

Boost your grades with free daily practice questions. Download Nagwa Practice today!

scan me!

Nagwa usa cookies para asegurarse de que disfrutes de la mejor experiencia en nuestro sitio web. Descubrir más acerca de nuestra Política de privacidad.