Hoja de actividades: Magnitudes proporcionales y no proporcionales

En esta hoja de actividades, vamos a practicar cómo identificar razones que están en proporción, cómo calcular un término desconocido en una proporción y cómo identificar proporcionalidad en el mundo real.

P1:

Considera los dos pares de valores siguientes: 63 puntos anotados en 7 partidos, y 76 puntos anotados en 10 partidos. ¿Forman una proporción?

  • A
  • Bno

P2:

Este año, Teresa, celebra su décimo cumpleaños y su hermano Enrique celebra su quinto cumpleaños. Teresa ha notado que ahora tiene el doble de edad de su hermano. ¿Es la relación entre sus edades proporcional?

  • A No
  • B

P3:

La siguiente tabla representa el número de sitios excavados por un grupo de arqueólogos y el número de semanas que les tomó completar la excavación. ¿La tabla muestra una relación de proporcionalidad?

Número de sitios 2 3 4
Número de semanas 12 18 24
  • A
  • BNo

P4:

La tabla siguiente muestra el coste de enviar por correo paquetes de varios pesos. ¿Es el coste de enviar un paquete proporcional a su peso?

Coste ($) 0,39 0,59 0,79 1,36
Peso (oz) 1 2 3 4
  • Ano
  • B

P5:

¿Es la longitud del lado de esta figura proporcional a su área?

  • A no
  • B

P6:

Una proporción es una igualdad entre dos o más razones. ¿Cierto o falso?

  • Acierto
  • Bfalso

P7:

Un elevador asciende a una velocidad de 750 pies por minuto por minuto. ¿Es la altura a la que el elevador sube proporcional al número de minutos que le toma llegar ahí?

  • A No
  • B

P8:

Araceli quiere agrandar una foto que mide 4 pulgadas por 6 pulgadas. ¿Cuál de las siguientes tamaños es proporcional al de la foto original?

  • A18 in por 24 in
  • B8 in por 10 in
  • C20 in por 24 in
  • D24 in por 36 in
  • E16 in por 20 in

P9:

En esta figura geométrica, ¿es la longitud del lado proporcional al perímetro?

  • A
  • B no

P10:

Escribe la función que está representada por la siguiente gráfica.

  • A 𝑓 ( 𝑥 ) = 3 2 𝑥 + 1 1 2
  • B 𝑓 ( 𝑥 ) = 2 3 𝑥 3
  • C 𝑓 ( 𝑥 ) = 2 3 𝑥 + 3
  • D 𝑓 ( 𝑥 ) = 3 2 𝑥 + 3
  • E 𝑓 ( 𝑥 ) = 2 3 𝑥 + 3

P11:

La tabla muestra cuantas páginas lee Joaquín a medida que pasa el tiempo.

¿Está Joaquín leyendo a velocidad constante? ¿Por qué?

Tiempo (minutos) 12 28 36 48 60
número de páginas 9 21 27 36 45
  • Ano, porque el número de páginas no es proporcional al tiempo de lectura.
  • Bsí, porque el número de páginas es proporcional al tiempo de lectura.

¿Cuál es la constante de proporcionalidad (tasa unitaria)? ¿Qué representa dicha constante?

  • A9 páginas, el primer número de páginas leídas
  • B60 páginas, el tiempo total de lectura
  • C45 páginas, el último número de páginas leídas
  • D0.75 páginas por minuto, la velocidad de lectura
  • E0.75 páginas por minuto, el tiempo que le toma leer una página

Escribe una ecuación de la forma 𝑝=𝑚𝑡 para el número de páginas leídas 𝑝 en 𝑡 minutos.

  • A 𝑝 = 0 . 7 5 𝑡
  • B 𝑝 = 4 3 𝑡
  • C 𝑝 = 9 + 𝑡
  • D 𝑝 = 0 . 7 5 + 𝑡
  • E 𝑝 = 4 3 + 𝑡

Nagwa usa cookies para asegurarse de que disfrutes de la mejor experiencia en nuestro sitio web. Descubrir más acerca de nuestra Política de privacidad.