Hoja de actividades: La esperanza y la varianza de una variable aleatoria discreta

En esta hoja de actividades, vamos a practicar cómo calcular la esperanza y la varianza de una variable aleatoria discreta a partir de una tabla y de un gráfico.

P1:

Determina el valor esperado de la variable aleatoria 𝑋 cuya distribución de probabilidad se muestra a continuación.

P2:

Esta tabla de frecuencias muestra los coches que poseen 65 familias:

Número de coches1234
Frecuencia1035155

Calcula la media de coches por familia.

  • A229
  • B132
  • C292
  • D1329
  • E2913

Con los datos se puede construir una distribución de probabilidad para una variable aleatoria discreta 𝑋. ¿Cuánto valen 𝑎, 𝑏, 𝑐 y 𝑑?

𝑥1234
𝑝()𝑎𝑏𝑐𝑑
  • A𝑎=213, 𝑏=713, 𝑐=913, 𝑑=113
  • B𝑎=110, 𝑏=235, 𝑐=15, 𝑑=45
  • C𝑎=213, 𝑏=713, 𝑐=913, 𝑑=413
  • D𝑎=213, 𝑏=713, 𝑐=313, 𝑑=113
  • E𝑎=1113, 𝑏=613, 𝑐=1013, 𝑑=1213

Calcula la esperanza de 𝑋.

  • A2913
  • B292
  • C229
  • D132
  • E1329

P3:

La tabla muestra la distribución de probabilidad de un dado. Calcula 𝐸.

𝑥123456
𝑝()161616161616

P4:

Un experimento aleatorio tiene asociada una variable aleatoria discreta 𝑋 con la distribución de probabilidad que se muestra. Si el experimento se repite muchísimas veces, ¿cuál sería probablemente la media de todos los resultados?

𝑥2345
𝑝(𝑥)0,10,30,20,4

P5:

Determina el valor esperado de la variable aleatoria 𝑋 cuya distribución de probabilidad se muestra a continuación.

P6:

La función representada por la siguiente tabla es una función de probabilidad de una variable aleatoria discreta 𝑋. Dado que el valor esperado de 𝑋 es 4, halla los valores de 𝑎 y 𝑏.

𝑥13𝑏56
𝑓(𝑥)0,20,2𝑎0,20,3
  • A𝑎=0,1, 𝑏=3
  • B𝑎=0, 𝑏=3
  • C𝑎=0,1, 𝑏=4
  • D𝑎=0,2, 𝑏=5

P7:

Un experimento que produce la variable aleatoria 𝑋 tiene la siguiente distribución de probabilidad.

𝑥2345
𝑝(𝑥)0.10.30.20.4

Calcula 𝐸(𝑋).

Calcula 𝐸𝑋.

La varianza 𝑋 puede calcularse usando la fórmula Var(𝑋)=𝐸𝑋𝐸(𝑋). Calcula Var(𝑋) con una precisión de dos decimales.

P8:

La función que se muestra en la siguiente tabla es la función de probabilidad de una variable aleatoria discreta 𝑋. Halla la esperanza de 𝑋.

𝑋01234
𝑝(𝑋)0,1𝑎0,10,40,2

P9:

La variable aleatoria discreta 𝑋 tiene la siguiente distribución de probabilidad:

𝑥1234
𝑝()𝑘1𝑘2𝑘3𝑘4

¿Cuánto vale 𝑘?

  • A110
  • B1213
  • C611
  • D2512
  • E1225

Por lo tanto, calcula la esperanza matemática de 𝑋.

  • A2411
  • B4813
  • C253
  • D25
  • E4825

P10:

Una variable aleatoria 𝑋 tiene una distribución de probabilidad uniforme de tal manera que 𝑃(𝑋=𝑥)=111, donde 𝑥{1,2,3,4,5,6,7,8,9,10,11}. Determina 𝐸.

P11:

En un experimento, Aitana va a girar una pirinola de cuatro lados con los números del 1 al 4. Maribel dice que el valor esperado del experimento es 2.5. Aitana no está de acuerdo ya que es imposible obtener 2.5 y sugiere que el valor esperado es en realidad 3. ¿Quién está en lo correcto?

  • AMaribel está en lo correcto ya que el valor esperado es el promedio de los resultados de muchos experimentos, lo cual es 2.5 en este caso.
  • BAitana está en lo correcto ya que el valor esperado es el promedio del resultado de muchos experimentos, lo cual es 2.5 en este caso. Sin embargo, este resultado no se puede obtener en la pirinola, por lo tanto, se debe redondear al entero más cercano, el cual es 3.

P12:

En un experimento, Teresa lanza dos dados normales y suma los números de la cara superior. La distribución de probabilidad del experimento se muestra a continuación.

𝑥23456789101112
𝑝()136236𝑎436𝑏𝑐536𝑑336236136

Encuentra el valor de 𝑎, 𝑏, 𝑐 y 𝑑.

  • A𝑎=336, 𝑏=536, 𝑐=136, 𝑑=436
  • B𝑎=336, 𝑏=536, 𝑐=636, 𝑑=736
  • C𝑎=336, 𝑏=536, 𝑐=136, 𝑑=336
  • D𝑎=536, 𝑏=336, 𝑐=636, 𝑑=436
  • E𝑎=336, 𝑏=536, 𝑐=636, 𝑑=436

¿Cuál es el valor esperado del experimento?

Nagwa usa cookies para asegurarse de que disfrutes de la mejor experiencia en nuestro sitio web. Descubrir más acerca de nuestra Política de privacidad.