# Worksheet: Converting between Different Forms of Complex Numbers

Q1:

Put in exponential form.

• A
• B
• C
• D
• E

Q2:

Put in exponential form.

• A
• B
• C
• D
• E

Q3:

Express the complex number in exponential form.

• A
• B
• C
• D

Q4:

• A
• B
• C
• D

Q5:

Given that , express in algebraic form.

• A
• B
• C
• D

Q6:

Given that , express in algebraic form.

• A
• B
• C
• D
• E

Q7:

Put in exponential form.

• A
• B
• C
• D
• E

Q8:

Given that , find the algebraic form of .

• A
• B
• C
• D
• E

Q9:

Given that , write in trigonometric form.

• A
• B
• C
• D
• E

Q10:

Express the number in trigonometric form.

• A
• B
• C
• D
• E

Q11:

Express the number in trigonometric form.

• A
• B
• C
• D
• E

Q12:

Simplify , giving your answer in algebraic form, and hence express the square roots of in exponential form.

• A , ,
• B , ,
• C , ,
• D , ,

Q13:

Put in exponential form.

• A
• B
• C
• D
• E

Q14:

Which of the following expresses the complex number in polar coordinates?

• A
• B
• C
• D

Q15:

Given that , find the trigonometric form of .

• A
• B
• C
• D
• E

Q16:

• A
• B
• C
• D
• E

Q17:

Put in the form , where , , and then write it in trigonometric form.

• A ,
• B ,
• C ,
• D ,

Q18:

Put in exponential form.

• A
• B
• C
• D

Q19:

Express the complex number in trigonometric form.

• A
• B
• C
• D

Q20:

• A ,
• B ,
• C ,
• D ,

Q21:

Determine the real part of a complex number whose modulus is and principal amplitude is .

• A6
• B
• C
• D