Worksheet: Evaluating Trigonometric Functions

In this worksheet, we will practice finding the value of a trigonometric function from a given value of another trigonometric function.

Q1:

Find csc𝜃 given tan𝜃=247 and cos𝜃<0.

  • A 2 5 2 4
  • B 2 5 7
  • C 2 5 2 4
  • D 2 5 7

Q2:

Find the value of cos(180𝜃) given sin𝜃=35 where 270<𝜃<360.

  • A 4 5
  • B 4 5
  • C 3 4
  • D 3 4

Q3:

Find all the trigonometric ratios of 𝜃 given cot𝜃=815 where 𝜃3𝜋2,2𝜋.

  • A s i n 𝜃 = 1 5 1 7 , c o s 𝜃 = 8 1 7 , t a n 𝜃 = 1 5 8 , c s c 𝜃 = 1 7 1 5 , s e c 𝜃 = 1 7 8
  • B s i n 𝜃 = 1 5 1 7 , c o s 𝜃 = 8 1 7 , t a n 𝜃 = 1 5 8 , c s c 𝜃 = 1 7 1 5 , s e c 𝜃 = 1 7 8
  • C s i n 𝜃 = 1 5 1 7 , c o s 𝜃 = 8 1 7 , t a n 𝜃 = 1 5 8 , c s c 𝜃 = 1 7 1 5 , s e c 𝜃 = 1 7 8
  • D s i n 𝜃 = 1 5 1 7 , c o s 𝜃 = 8 1 7 , t a n 𝜃 = 1 5 8 , c s c 𝜃 = 1 7 1 5 , s e c 𝜃 = 1 7 8

Q4:

Given that cot(𝜃)=32, where 𝜋2<𝜃<𝜋, evaluate sec(𝜃) without using a calculator.

  • A 1 3 9
  • B 9 1 3
  • C 9 1 3
  • D 1 3 9
  • E 5 2

Q5:

Given that csc𝜃=76 and tan𝜃>0, find cos𝜃.

  • A 1 3 7
  • B 6 7
  • C 1 3 6
  • D 6 7
  • E 1 3 7

Q6:

Given that sin(𝜃)=13, where 𝜋<𝜃<3𝜋2, evaluate csc(2𝜃) without using a calculator.

Hint: Take cscsincos(2𝜃)=12(𝜃)(𝜃).

  • A 9 2 4
  • B 9 2 8
  • C 9 2 8
  • D 2 2 9
  • E 4 2 9

Q7:

Given that sin(𝜃)=13, where 0<𝜃<𝜋2, and cos(𝜃)=14, where 0<𝜃<𝜋2, evaluate cos(𝜃+𝜃) without using a calculator.

Hint: Take coscoscossinsin(𝜃+𝜃)=(𝜃)(𝜃)(𝜃)(𝜃).

  • A 1 5 + 2 2 1 2
  • B 1 5 2 2 1 2
  • C 2 6
  • D 1 5 2 2 1 2
  • E 1 5 + 2 2 1 2

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.