Lesson Worksheet: Arbitrary Roots of Complex Numbers Mathematics

In this worksheet, we will practice using de Moivre’s theorem to find the 𝑛th roots of a complex number and exploring their properties.

Q1:

Determine the square roots of 𝑧, given that 𝑧=8𝑖.

  • A{1,1}
  • B{𝑖,𝑖}
  • C32+12𝑖,3212𝑖
  • D{22𝑖,2+2𝑖}
  • E1212𝑖,12+12𝑖

Q2:

Given that 𝑧=28+96𝑖, determine the square roots of 𝑧 without first converting it to trigonometric form.

  • A725+2425𝑖,725+2425𝑖
  • B(6+8𝑖),(6+8𝑖)
  • C(8+6𝑖),(8+6𝑖)
  • D2425725𝑖,2425725𝑖
  • E212𝑖,212𝑖

Q3:

Use De Moivre’s theorem to find the two square roots of 165𝜋3𝑖5𝜋3cossin.

  • A±4𝑖
  • B±1212𝑖
  • C±23+2𝑖
  • D±32+12𝑖

Q4:

Given that 𝑧=𝜋6+𝑖𝜋6sincos, determine the cubic roots of 𝑧.

  • A5𝜋9+𝑖5𝜋9cossin, 7𝜋9+𝑖7𝜋9cossin, 𝜋9+𝑖𝜋9cossin
  • B7𝜋9+𝑖7𝜋9cossin, 5𝜋9+𝑖5𝜋9cossin, 𝜋9+𝑖𝜋9cossin
  • C5𝜋18+𝑖5𝜋18cossin, 17𝜋18+𝑖17𝜋18cossin, 7𝜋18+𝑖7𝜋18cossin
  • D7𝜋9+𝑖7𝜋9cossin, 8𝜋9+𝑖8𝜋9cossin, 5𝜋9+𝑖5𝜋9cossin
  • E7𝜋9+𝑖7𝜋9cossin, 4𝜋9+𝑖4𝜋9cossin, 𝜋9+𝑖𝜋9cossin

Q5:

Find the possible real values of 13𝑖+𝑖.

  • A2, 0, and 2
  • B1, 0, and 1
  • C23, 0, and 23
  • D13, 0, and 13
  • E13, 0, and 13

Q6:

Solve 𝑧=162+16𝑖2.

  • A𝑧=2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒
  • B𝑧=2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒
  • C𝑧=4𝑒, 4𝑒, 4𝑒, 4𝑒, 4𝑒
  • D𝑧=4𝑒, 4𝑒, 4𝑒, 4𝑒, 4𝑒
  • E𝑧=32𝑒, 32𝑒, 32𝑒, 32𝑒, 32𝑒

By plotting these solutions on an Argand diagram, or otherwise, describe the geometric properties of the solutions.

  • AThe roots lie at the vertices of a regular pentagon inscribed in a circle of radius 32 at the origin.
  • BThe roots lie at the vertices of a regular pentagon inscribed in a circle of radius 1 at the origin.
  • CThe roots lie at the vertices of a regular pentagon inscribed in a circle of radius 4 at the origin.
  • DThe roots lie in a straight line.
  • EThe roots lie at the vertices of a regular pentagon inscribed in a circle of radius 2 at the origin.

Q7:

Find the solutions to the equation 𝑧=125𝑒. What are their geometrical properties?

  • A5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒; the roots lie at the vertices of a regular hexagon centered at the origin, inscribed in a circle of radius 5.
  • B5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒; the roots lie at the vertices of a regular hexagon centered at the origin, inscribed in a circle of radius 5.
  • C5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒; the roots lie at the vertices of a regular hexagon centered at the origin, inscribed in a circle of radius 5.
  • D5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒, 5𝑒; the roots lie at the vertices of a regular hexagon centered at the origin, inscribed in a circle of radius 5.
  • E125𝑒, 125𝑒, 125𝑒, 125𝑒, 125𝑒, 125𝑒; the roots lie at a straight line that passes through the origin.

State the 6th roots of unity.

  • A𝑒, 𝑖, 𝑒, 𝑒, 𝑖, 𝑒
  • B1, 𝑒, 𝑖, 1, 𝑒, 𝑖
  • C1, 𝑒, 𝑒, 𝑒, 𝑒, 𝑒
  • D1, 𝑒, 𝑒, 1, 𝑒, 𝑒
  • E1, 𝑒, 𝑒, 1, 𝑒, 𝑒

What is the relationship between the 6th roots of unity and the solutions to the equation 𝑧=125𝑒?

  • AThe solutions to the equation are the 6th roots of unity multiplied by 5𝑒.
  • BThe solutions to the equation are the 6th roots of unity multiplied by 125𝑒.
  • CThe solutions to the equation are the 6th roots of unity multiplied by 5𝑒.
  • DThe solutions to the equation are the 6th roots of unity multiplied by 5𝑒.
  • EThe solutions to the equation are the 6th roots of unity multiplied by 5𝑒.

Q8:

Find the roots of 𝑧+16=0.

  • A2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒.
  • B2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒
  • C2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒
  • D𝑒, 𝑒, 𝑒, 𝑒, 𝑒, 𝑒, 𝑒, 𝑒
  • E2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒, 2𝑒

The complex numbers representing the roots of 𝑧+16=0 are each squared to form the vertices of a new shape. What is the area of this shape?

Q9:

Find the coordinates of the vertices of a regular hexagon centered at (1,2) with one vertex at the origin.

Give your answer as exact Cartesian coordinates.

  • A(0,0), 3+232,362, 1+232,322, (2,4), 1232,322, 3232,362
  • B(0,0), 232,23+12, 632,23+12, (4,2), 6+32,23+32, 2+32,23+12
  • C(0,0), 1+232,3+22, 3+232,3+62, (2,4), 3232,3+62, 1232,3+22
  • D(0,0), (2,0), (3,2), (2,4), (0,4), (1,2)
  • E(0,0), 2+32,2312, 6+32,2332, (4,2), 632,2332, 232,2312

Q10:

Find the coordinates of the vertices of a regular pentagon centered at the origin with one vertex at (3,3).

Give your answer as exact Cartesian coordinates.

  • A(3,3), 3213𝜋20,3213𝜋20sincos, 3219𝜋20,3219𝜋20sincos, 3211𝜋20,3211𝜋20sincos, 323𝜋20,323𝜋20sincos
  • B(3,3), 3213𝜋20,3213𝜋20cossin, 3219𝜋20,3219𝜋20cossin, 3211𝜋20,3211𝜋20cossin, 323𝜋20,323𝜋20cossin
  • C(3,3), 3211𝜋15,3211𝜋15cossin, 3213𝜋15,3213𝜋15cossin, 327𝜋15,327𝜋15cossin, 32𝜋15,32𝜋15cossin
  • D(3,3), 313𝜋20,313𝜋20sincos, 319𝜋20,319𝜋20sincos, 311𝜋20,311𝜋20sincos, 33𝜋20,33𝜋20sincos
  • E(3,3), 313𝜋20,313𝜋20cossin, 319𝜋20,319𝜋20cossin, 311𝜋20,311𝜋20cossin, 33𝜋20,33𝜋20cossin

Practice Means Progress

Boost your grades with free daily practice questions. Download Nagwa Practice today!

scan me!

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.