The portal has been deactivated. Please contact your portal admin.

Lesson Worksheet: Integral Test for Series Mathematics • Higher Education

In this worksheet, we will practice using the integral test for series to determine whether a series containing nonnegative terms is convergent or divergent.

Q1:

Using the integral test, determine whether the series 12(2)+13(3)+14(4)+lnlnln is convergent or divergent.

  • Adivergent
  • Bconvergent

Q2:

We will investigate the convergence or divergence of the series 12𝑛1 using the integral test.

Evaluate 12𝑥1𝑥d, if possible.

  • A0
  • B13
  • CThe integral diverges.
  • D1
  • E13

Determine whether the series converges or diverges.

  • AIt diverges.
  • BIt converges.

Q3:

Determine whether the series 𝑛𝑒 converges or diverges.

  • AIt diverges.
  • BIt converges.

Q4:

Use the integral test to determine whether the series 𝑛sin converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q5:

Determine whether the series 𝑒𝑒+4 converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q6:

Use the integral test to determine whether the series 𝑛3+4𝑛 converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q7:

Determine whether the series 𝑛𝑛+1tan converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q8:

Determine whether the series 𝑒 converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q9:

Use the integral test to determine whether the series 1𝑛 converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q10:

Determine whether the series 𝑛𝑛ln converges or diverges.

  • AThe series diverges.
  • BThe series converges.

This lesson includes 5 additional questions and 45 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.