Worksheet: Integral Test for Series

In this worksheet, we will practice using the integral test for series to determine whether a series containing nonnegative terms is convergent or divergent.

Q1:

Using the integral test, determine whether the series 12(2)+13(3)+14(4)+lnlnln is convergent or divergent.

  • Adivergent
  • Bconvergent

Q2:

We will investigate the convergence or divergence of the series 12𝑛1 using the integral test.

Evaluate 12𝑥1𝑥d, if possible.

  • A 1 3
  • B 1 3
  • C1
  • DThe integral diverges.
  • E0

Determine whether the series converges or diverges.

  • AIt converges.
  • BIt diverges.

Q3:

Determine whether the series 𝑛𝑒 converges or diverges.

  • AIt converges.
  • BIt diverges.

Q4:

Use the integral test to determine whether the series 𝑛sin converges or diverges.

  • AThe series diverges.
  • BThe series converges.

Q5:

Determine whether the series 𝑒𝑒+4 converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q6:

Use the integral test to determine whether the series 𝑛3+4𝑛 converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q7:

Determine whether the series 𝑛𝑛+1tan converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q8:

Use the integral test to determine whether the series 1𝑛 converges or diverges.

  • AThe series diverges.
  • BThe series converges.

Q9:

Determine whether the series 𝑒 converges or diverges.

  • AThe series converges.
  • BThe series diverges.

Q10:

Determine whether the series 𝑛𝑛ln converges or diverges.

  • AThe series diverges.
  • BThe series converges.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.