# Lesson Worksheet: Integral Test for Series Mathematics • Higher Education

In this worksheet, we will practice using the integral test for series to determine whether a series containing nonnegative terms is convergent or divergent.

Q1:

Using the integral test, determine whether the series is convergent or divergent.

• Bconvergent

Q2:

We will investigate the convergence or divergence of the series using the integral test.

Evaluate , if possible.

• A0
• B
• CThe integral diverges.
• D1
• E

Determine whether the series converges or diverges.

• AIt diverges.
• BIt converges.

Q3:

Determine whether the series converges or diverges.

• AIt diverges.
• BIt converges.

Q4:

Use the integral test to determine whether the series converges or diverges.

• AThe series converges.
• BThe series diverges.

Q5:

Determine whether the series converges or diverges.

• AThe series converges.
• BThe series diverges.

Q6:

Use the integral test to determine whether the series converges or diverges.

• AThe series converges.
• BThe series diverges.

Q7:

Determine whether the series converges or diverges.

• AThe series converges.
• BThe series diverges.

Q8:

Determine whether the series converges or diverges.

• AThe series converges.
• BThe series diverges.

Q9:

Use the integral test to determine whether the series converges or diverges.

• AThe series converges.
• BThe series diverges.

Q10:

Determine whether the series converges or diverges.

• AThe series diverges.
• BThe series converges.

This lesson includes 5 additional questions and 45 additional question variations for subscribers.