# Worksheet: Scalar and Vector Quantities

In this worksheet, we will practice distinguishing between scalar quantities with magnitudes and vector quantities with both directions and magnitudes.

**Q1: **

If an acceleration is multiplied by a time, is the resultant quantity a vector quantity or a scalar quantity?

- AVector
- BScalar

**Q2: **

A set of measured values of a quantity are recorded as having the values 7 units, 4 units, negative 2 units, and 6 units. Which of the following types of quantities could these measurements represent?

- AEither a scalar quantity or a vector quantity
- BA vector quantity only
- CA scalar quantity only
- DNeither a scalar quantity nor a vector quantity

**Q3: **

If a time is multiplied by a velocity, is the resultant quantity a vector quantity or a scalar quantity?

- AVector
- BScalar

**Q6: **

The two vectors shown can be added to produce a resultant vector. Which of the following diagrams correctly shows a comparison of both of these vectors to the resultant of the vectors?

- A
- B
- C
- D
- E

**Q7: **

Three measured values of displacement are 6 cm east, 4 cm north, and 5 cm south. A student argues that the average displacement value is 5 cm east, as north multiplied by south equals 1. Which of the following statements explains why the student is incorrect?

- AVector values cannot be divided by nonvector values.
- BNorth multiplied by south equals minus one.
- CNorth multiplied by south is not defined.
- DNorth multiplied by south equals zero.
- EVector values cannot be added to other vector values.

**Q8: **

If an area is multiplied by a length, is the resultant quantity a vector quantity or a scalar quantity?

- AScalar
- BVector