Worksheet: Comparison Test for Improper Integrals

In this worksheet, we will practice determining whether an improper integral is convergent or divergent using the comparison test for improper integrals.

Q1:

Use the comparison theorem to determine whether the integral ο„Έπ‘₯π‘₯+1π‘₯∞d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q2:

Use the comparison theorem to determine whether the integral ο„Έπ‘₯+1√π‘₯βˆ’π‘₯π‘₯∞οŠͺd is convergent or divergent.

  • Adivergent
  • Bconvergent

Q3:

Use the comparison theorem to determine whether the integral ο„Έ1+π‘₯√π‘₯π‘₯∞sind is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q4:

Use the comparison theorem to determine whether the integral ο„Έπ‘₯√π‘₯π‘₯οŽ„οŠ¦οŠ¨sind is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q5:

Use the comparison theorem to determine whether the integral ο„Έπ‘₯π‘₯√π‘₯π‘₯secd is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q6:

Use the comparison theorem to determine whether the integral ο„Έπ‘₯2+𝑒π‘₯βˆžοŠ¦οŠ±οŠ§ο—tand is convergent or divergent.

  • Aconvergent
  • Bdivergent

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.