Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.

Start Practicing

Worksheet: Determining the Type of the Improper Integrals Using the Comparison Test

Q1:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ π‘₯ + 1 π‘₯ ∞ 0 3 d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q2:

Use the comparison theorem to determine whether the integral ο„Έ 1 + π‘₯ √ π‘₯ π‘₯ ∞ 1 2 s i n d is convergent or divergent.

  • Adivergent
  • Bconvergent

Q3:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ √ π‘₯ π‘₯ πœ‹ 0 2 s i n d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q4:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ 2 + 𝑒 π‘₯ ∞ 0 βˆ’ 1 π‘₯ t a n d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q5:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ + 1 √ π‘₯ βˆ’ π‘₯ π‘₯ ∞ 1 4 d is convergent or divergent.

  • Adivergent
  • Bconvergent

Q6:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ π‘₯ √ π‘₯ π‘₯ 1 0 2 s e c d is convergent or divergent.

  • Adivergent
  • Bconvergent