Worksheet: Comparison Test for Improper Integrals

In this worksheet, we will practice determining whether an improper integral is convergent or divergent using the comparison test for improper integrals.

Q1:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ π‘₯ + 1 π‘₯ ∞   d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q2:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ + 1 √ π‘₯ βˆ’ π‘₯ π‘₯ ∞  οŠͺ d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q3:

Use the comparison theorem to determine whether the integral ο„Έ 1 + π‘₯ √ π‘₯ π‘₯ ∞   s i n d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q4:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ √ π‘₯ π‘₯ οŽ„   s i n d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q5:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ π‘₯ √ π‘₯ π‘₯    s e c d is convergent or divergent.

  • Aconvergent
  • Bdivergent

Q6:

Use the comparison theorem to determine whether the integral ο„Έ π‘₯ 2 + 𝑒 π‘₯ ∞     t a n d is convergent or divergent.

  • Adivergent
  • Bconvergent

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.