Lesson Worksheet: Equation of a Straight Line: Standard and Point–Slope Forms Mathematics • 9th Grade

In this worksheet, we will practice finding the equation of a line in standard and point–slope forms given two points, a slope and a point, or a graph.

Q1:

Find, in point-slope form, the equation of the graph with slope 4 that passes through the point (2,βˆ’3).

  • A𝑦+3=4(π‘₯βˆ’2)
  • Bπ‘¦βˆ’3=4π‘₯+2
  • C𝑦+3=4π‘₯βˆ’2
  • Dπ‘¦βˆ’3=4(π‘₯βˆ’2)
  • E𝑦+3=4(π‘₯+2)

Q2:

Write the equation represented by the graph shown. Give your answer in the form π‘¦βˆ’π‘Ž=π‘š(π‘₯βˆ’π‘).

  • A𝑦+2=12(π‘₯βˆ’6)
  • Bπ‘¦βˆ’6=2(π‘₯+2)
  • Cπ‘¦βˆ’6=βˆ’12(π‘₯+2)
  • Dπ‘¦βˆ’6=12(π‘₯+2)
  • E𝑦+2=2(π‘₯βˆ’6)

Q3:

Find, in point-slope form, the equation of the line with slope 27 that passes through the point 𝐴(1,βˆ’10).

  • A𝑦+10=βˆ’27(π‘₯βˆ’1)
  • Bπ‘¦βˆ’10=27(π‘₯+1)
  • Cπ‘¦βˆ’10=βˆ’27(π‘₯+1)
  • D𝑦+10=27(π‘₯βˆ’1)
  • E𝑦+10=27(π‘₯+1)

Q4:

Find, in point-slope form, the equation of the graph with slope βˆ’2 that passes through the point (1, 6).

  • Aπ‘¦βˆ’6=2π‘₯βˆ’1
  • Bπ‘¦βˆ’6=βˆ’2(π‘₯βˆ’1)
  • Cπ‘¦βˆ’6=2(π‘₯βˆ’1)
  • Dπ‘¦βˆ’6=βˆ’2π‘₯βˆ’1
  • E𝑦+6=βˆ’2(π‘₯βˆ’1)

Q5:

Write the equation represented by the graph shown. Give your answer in the form π‘¦βˆ’π‘Ž=π‘š(π‘₯βˆ’π‘).

  • Aπ‘¦βˆ’2=13(π‘₯βˆ’5)
  • Bπ‘¦βˆ’5=βˆ’3(π‘₯βˆ’2)
  • Cπ‘¦βˆ’5=3(π‘₯βˆ’2)
  • Dπ‘¦βˆ’5=13(π‘₯βˆ’2)
  • Eπ‘¦βˆ’2=3(π‘₯βˆ’5)

Q6:

Write the equation represented by the graph shown. Give your answer in the form π‘¦βˆ’π‘Ž=π‘š(π‘₯βˆ’π‘).

  • Aπ‘¦βˆ’1=βˆ’43(π‘₯βˆ’3)
  • Bπ‘¦βˆ’3=43(π‘₯βˆ’1)
  • Cπ‘¦βˆ’1=34(π‘₯βˆ’3)
  • Dπ‘¦βˆ’1=43(π‘₯βˆ’3)
  • Eπ‘¦βˆ’3=34(π‘₯βˆ’1)

Q7:

Which of the following graphs represents the equation 𝑦+1=2(π‘₯βˆ’4)?

  • A
  • B
  • C
  • D
  • E

Q8:

Which of the following graphs represents the equation π‘¦βˆ’2=4(π‘₯βˆ’1)?

  • A
  • B
  • C
  • D
  • E

Q9:

Which of the following graphs represents the equation π‘¦βˆ’5=23(π‘₯βˆ’3)?

  • A
  • B
  • C
  • D
  • E

Q10:

The points in the table belong to the same line. Find the coordinates of the π‘₯-intercept and 𝑦-intercept.

π‘₯7142128
π‘¦βˆ’7βˆ’12βˆ’17βˆ’22
  • Aπ‘₯-intercept coordinate: ο€Όβˆ’145,0, 𝑦-intercept coordinate: (0,βˆ’2)
  • Bπ‘₯-intercept coordinate: ο€Ό145,0, 𝑦-intercept coordinate: (0,2)
  • Cπ‘₯-intercept coordinate: ο€Όβˆ’514,0, 𝑦-intercept coordinate: (0,βˆ’2)
  • Dπ‘₯-intercept coordinate: ο€Ό0,βˆ’145, 𝑦-intercept coordinate: (βˆ’2,0)
  • Eπ‘₯-intercept coordinate: ο€Ό0,145, 𝑦-intercept coordinate: (βˆ’2,0)

This lesson includes 14 additional questions and 81 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.