Lesson Worksheet: Existence of Limits Mathematics • Higher Education

In this worksheet, we will practice determining whether the limit of a function at a certain value exists.

Q1:

Find lim→οŠͺ𝑓(π‘₯) if 𝑓(π‘₯)=5+π‘₯+3π‘₯|π‘₯+3|βˆ’4<π‘₯<0,5π‘₯+40<π‘₯<4.ifif

  • A9
  • B24
  • C1
  • DThe limit does not exist.

Q2:

Discuss the existence of lim→οŠͺ𝑓(π‘₯) given 𝑓(π‘₯)=6π‘₯<4,2π‘₯>4.ifif

  • AThe limit exists and equals 2.
  • BThe limit does not exist because 𝑓(4)≠𝑓(4).
  • CThe limit exists and equals 6.
  • DThe limit does not exist because 𝑓(4) does not exist.

Q3:

Discuss the existence of limο—β†’οŠ±οŠ§π‘“(π‘₯) given 𝑓(π‘₯)=π‘₯βˆ’4,π‘₯<βˆ’1,20,π‘₯>βˆ’1.

  • AThe limit does not exist because 𝑓(βˆ’1)≠𝑓(βˆ’1).
  • BThe limit does not exist because 𝑓(βˆ’1) does not exist.
  • CThe limit exists and equals 20.
  • DThe limit exists and equals βˆ’20.

Q4:

Discuss the existence of limο—β†’οŠ­π‘“(π‘₯) given 𝑓(π‘₯)=13π‘₯+71<π‘₯<7,14π‘₯+77≀π‘₯<8.ifif

  • AThe limit exists and equals 21.
  • BThe limit exists and equals 20.
  • CThe limit does not exist because limlimο—β†’οŠ­ο—β†’οŠ­οŽͺοŽ©π‘“(π‘₯)≠𝑓(π‘₯).
  • DThe limit does not exist because limο—β†’οŠ­οŽͺ𝑓(π‘₯) does not exist.
  • EThe limit does not exist because limο—β†’οŠ­οŽ©π‘“(π‘₯) does not exist.

Q5:

Discuss the existence of limο—β†’οŠ©π‘“(π‘₯) given 𝑓(π‘₯)=|π‘₯βˆ’2|+3,βˆ’2<π‘₯<3,π‘₯+6π‘₯βˆ’27π‘₯βˆ’3π‘₯,3<π‘₯<9.

  • Alimο—β†’οŠ©π‘“(π‘₯) exists and equals 4.
  • Blimο—β†’οŠ©π‘“(π‘₯) does not exist because limlimο—β†’οŠ©ο—β†’οŠ©οŽͺοŽ©π‘“(π‘₯)≠𝑓(π‘₯).
  • Climο—β†’οŠ©π‘“(π‘₯) does not exist because limο—β†’οŠ©οŽͺ𝑓(π‘₯) exist, but limο—β†’οŠ©οŽ©π‘“(π‘₯) does not exist.
  • Dlimο—β†’οŠ©π‘“(π‘₯) does not exist because limο—β†’οŠ©οŽ©π‘“(π‘₯) exist, but limο—β†’οŠ©οŽͺ𝑓(π‘₯) does not exist.

Q6:

Given that 𝑓(π‘₯)=1+π‘₯+3π‘₯|π‘₯+3|βˆ’3<π‘₯<0,4π‘₯+20<π‘₯<5,ifif find limο—β†’οŠ±οŠ©π‘“(π‘₯).

  • A5
  • Bβˆ’14
  • Cβˆ’3
  • DThe limit does not exist.

Q7:

Find limο—β†’οŠ±οŠ―π‘“(π‘₯), where 𝑓(π‘₯)=ο­βˆ’8+|π‘₯+9|,π‘₯β‰ βˆ’9,βˆ’7,π‘₯=βˆ’9.

Q8:

Investigate the behavior of 𝑓(π‘₯)=2ο€Ό1π‘₯cos as π‘₯ tends to 0.

Complete the table of values 𝑓(π‘₯) for values of π‘₯ that get closer to zero.

π‘₯199πœ‹1100πœ‹1999πœ‹11,000πœ‹19,999πœ‹110,000πœ‹
𝑓(π‘₯)β‹―β‹―β‹―β‹―β‹―β‹―
  • Aβˆ’2, 2, βˆ’2, 2, βˆ’2, 2
  • B1, 1, 1, 1, 1, 1
  • Cβˆ’1, 1, βˆ’1, 1, βˆ’1, 1
  • D2, 2, 2, 2, 2, 2

What does this suggest about the graph of 𝑓 close to zero?

  • AThat it oscillates rapidly between βˆ’2 and 2
  • BThat it decreases without bound
  • CThat it changes randomly
  • DThat it approaches 2
  • EThat it increases without bound

Hence, evaluate limο—β†’οŠ¦π‘“(π‘₯).

  • AThe limit does not exist.
  • Bβˆ’2
  • Cβˆ’βˆž
  • D2
  • E∞

Q9:

Find limο—β†’βˆšοŠ«π‘“(π‘₯) if the function 𝑓(π‘₯)=⎧βŽͺ⎨βŽͺ⎩72π‘₯π‘₯<√5,π‘₯βˆ’125√5π‘₯βˆ’5π‘₯>√5.ifif

  • A507√5
  • Bdoes not exist
  • C1752√5
  • D8752√5

Q10:

Discuss the existence of limο—β†’οŠ¨1|π‘₯βˆ’2|.

  • AThe limit does not exist, but limο—β†’οŠ¨1|π‘₯βˆ’2|=βˆ’βˆž.
  • BThe limit exists and is equal to 0.
  • CThe limit does not exist, but limο—β†’οŠ¨1|π‘₯βˆ’2|=∞.
  • DThe limit exists and is equal to 2.
  • EThe limit exists and is equal to 12.

Practice Means Progress

Download the Nagwa Practice app to access 74 additional questions for this lesson!

scan me!

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.