Lesson Worksheet: Elementary Matrices Mathematics

In this worksheet, we will practice identifying elementary matrices and their relation with row operations and how to find the inverse of an elementary matrix.

Q1:

Consider the matrix

𝐴=3048211018320397.

Write the elementary matrix corresponding to the row operation 𝑟𝑟.

  • A1000000100100100
  • B0000000100000100
  • C1000010000100001
  • D1000111100101111
  • E1000000101000010

Derive the subsequent row-equivalent matrix ̃𝐴.

  • Ã𝐴=3048211018320397
  • B̃𝐴=3840201112380793
  • C̃𝐴=0000039700002110
  • D̃𝐴=3048271018320391
  • Ẽ𝐴=3048039718322110

Is it true that multiplying ̃𝐴 by the inverse elementary matrix on the left side will return the original matrix 𝐴?

  • AYes
  • BNo

Q2:

Consider the matrix

𝐴=130329413.

Write the elementary matrix corresponding to the row operation 𝑟𝑟3𝑟.

  • A100310001
  • B300020001
  • C300010001
  • D100020001
  • E110310001

Derive the subsequent row-equivalent matrix ̃𝐴.

  • Ã𝐴=130679413
  • B̃𝐴=1300119413
  • C̃𝐴=13001112413
  • D̃𝐴=1306712413
  • Ẽ𝐴=130079413

Q3:

Consider the matrix

𝐴=414304221098.

Write the elementary matrix corresponding to the row operation 𝑟𝑟+12𝑟.

  • A1120010001
  • B0320010001
  • C3200010001
  • D1000120001
  • E1200010001

Derive the subsequent row-equivalent matrix ̃𝐴.

  • Ã𝐴=433402121098
  • B̃𝐴=415202121098
  • C̃𝐴=415204221098
  • D̃𝐴=690704221098
  • Ẽ𝐴=433404221098

Is it true that multiplying ̃𝐴 by the inverse elementary matrix on the left side will return the original matrix 𝐴?

  • AYes
  • BNo

Q4:

Consider the matrix

𝐴=122230413.

Write a single matrix 𝑀 corresponding to the combined row operations 𝑟2𝑟, 𝑟𝑟3𝑟, 𝑟𝑟+5𝑟, 𝑟𝑟, and 𝑟𝑟𝑟, in this order.

  • A𝑀=010200651
  • B𝑀=100200651
  • C𝑀=010210651
  • D𝑀=100210351
  • E𝑀=010210351

Use 𝑀 to calculate ̃𝐴.

  • Ã𝐴=2300141029
  • B̃𝐴=230014029
  • C̃𝐴=2300140210
  • D̃𝐴=23001410310
  • Ẽ𝐴=230014039

Q5:

Consider the matrix

𝐴=205135012110.

Write the elementary matrix corresponding to the row operation 𝑟𝑟.

  • A111010111
  • B001000100
  • C100010001
  • D100000101
  • E001010100

Derive the subsequent row-equivalent matrix ̃𝐴.

  • Ã𝐴=350120512110
  • B̃𝐴=150235010112
  • C̃𝐴=105215030112
  • D̃𝐴=211035012051
  • Ẽ𝐴=205121103501

Q6:

Consider the matrix 𝐴=2081115124080310.

Write the elementary matrix corresponding to the row operation 𝑟12𝑟.

  • A12000012000012000012
  • B1000010012121120001
  • C10000100001200001
  • D10000100001200001
  • E10000100121212120001

Derive the subsequent row-equivalent matrix ̃𝐴.

  • Ã𝐴=2081115112040310
  • B̃𝐴=20811151240.580310
  • C̃𝐴=20811151480160310
  • D̃𝐴=2081115112040310
  • Ẽ𝐴=20811151480160310

Q7:

Consider the matrix 𝐴=310124.

Write the elementary matrix corresponding to the row operation 𝑟2𝑟.

  • A1022
  • B1002
  • C2002
  • D1002

Derive the subsequent row-equivalent matrix ̃𝐴.

  • Ã𝐴=620248
  • B̃𝐴=310248
  • C̃𝐴=310144
  • D̃𝐴=310248
  • Ẽ𝐴=620248

Is it true that multiplying ̃𝐴 by the inverse of the elementary matrix on the left side will return the original matrix 𝐴?

  • AYes
  • BNo

Q8:

State whether the following statements are true or false.

Every elementary matrix is invertible.

  • ATrue
  • BFalse

The product of elementary matrices is invertible.

  • ATrue
  • BFalse

Q9:

If 𝐸 is an elementary matrix that represents row operations to convert matrix 𝐴 to matrix 𝐵, then which of the following statements is true?

  1. 𝐴×𝐸=𝐵
  2. 𝐸×𝐵=𝐴
  3. 𝐸×𝐵=𝐴
  4. 𝐸×𝐴=𝐵
  • AAll of them
  • BI only
  • CIII and IV
  • DIII only
  • ENone of them

Q10:

What is the elementary matrix describing the row operation 𝑟=3𝑟 for a 2×2 matrix?

  • A1003
  • B3001
  • C3301
  • D3303
  • E0301

Practice Means Progress

Boost your grades with free daily practice questions. Download Nagwa Practice today!

scan me!

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.