Lesson Worksheet: Euler’s Formula for Trigonometric Identities Mathematics

In this worksheet, we will practice using Euler’s formula to prove trigonometric identities like double angle and half angle.

Q1:

Use Eulerโ€™s formula to express tan(8๐œƒ) in terms of tan๐œƒ.

Hint: First write cos(8๐œƒ) and sin(8๐œƒ) in terms of sin๐œƒ and cos๐œƒ.

  • Atantantantantantantantan(8๐œƒ)=7๐œƒโˆ’35๐œƒ+21๐œƒโˆ’๐œƒ1โˆ’21๐œƒ+35๐œƒโˆ’7๐œƒ๏Šฉ๏Šซ๏Šญ๏Šจ๏Šช๏Šฌ
  • Btantantantantantantantantan(8๐œƒ)=8๐œƒโˆ’56๐œƒโˆ’56๐œƒ+8๐œƒ1+28๐œƒโˆ’70๐œƒ+28๐œƒ+๐œƒ๏Šฉ๏Šซ๏Šญ๏Šจ๏Šช๏Šฌ๏Šฎ
  • Ctantantantantantantantantan(8๐œƒ)=โˆ’8๐œƒ+56๐œƒโˆ’56๐œƒ+8๐œƒ1โˆ’28๐œƒ+70๐œƒโˆ’28๐œƒ+๐œƒ๏Šฉ๏Šซ๏Šญ๏Šจ๏Šช๏Šฌ๏Šฎ
  • Dtantantantantantantantan(8๐œƒ)=โˆ’7๐œƒ+35๐œƒโˆ’21๐œƒ+๐œƒโˆ’1+21๐œƒโˆ’35๐œƒ+7๐œƒ๏Šฉ๏Šซ๏Šญ๏Šจ๏Šช๏Šฌ
  • Etantantantantantantantantan(8๐œƒ)=8๐œƒโˆ’56๐œƒ+56๐œƒโˆ’8๐œƒ1โˆ’28๐œƒ+70๐œƒโˆ’28๐œƒ+๐œƒ๏Šฉ๏Šซ๏Šญ๏Šจ๏Šช๏Šฌ๏Šฎ

Q2:

Using Eulerโ€™s formula, express tan(3๐œƒ) in terms of tan๐œƒ.

  • Atantantantan(3๐œƒ)=โˆ’3๐œƒ+๐œƒ1โˆ’3๐œƒ๏Šฉ๏Šจ
  • Btantantantan(3๐œƒ)=3๐œƒ+๐œƒ1+3๐œƒ๏Šฉ๏Šจ
  • Ctantantantan(3๐œƒ)=โˆ’2๐œƒ+๐œƒ1โˆ’2๐œƒ๏Šฉ๏Šจ
  • Dtantantantan(3๐œƒ)=2๐œƒโˆ’๐œƒ1โˆ’2๐œƒ๏Šฉ๏Šจ
  • Etantantantan(3๐œƒ)=3๐œƒโˆ’๐œƒ1โˆ’3๐œƒ๏Šฉ๏Šจ

Q3:

Using Eulerโ€™s formula, derive a formula for cos(3๐œƒ) and sin(3๐œƒ) in terms of sin๐œƒ and cos๐œƒ.

  • Acoscoscos(3๐œƒ)=โˆ’2๐œƒโˆ’3๐œƒ๏Šฉ, sinsinsin(3๐œƒ)=3๐œƒ+2๐œƒ๏Šฉ
  • Bcoscoscossin(3๐œƒ)=๐œƒ+3๐œƒ๐œƒ๏Šฉ๏Šจ, sinsincossin(3๐œƒ)=โˆ’3๐œƒ๐œƒ+๐œƒ๏Šจ๏Šฉ
  • Ccoscoscos(3๐œƒ)=4๐œƒ+3๐œƒ๏Šฉ, sinsinsin(3๐œƒ)=3๐œƒ+4๐œƒ๏Šฉ
  • Dcoscoscos(3๐œƒ)=4๐œƒโˆ’3๐œƒ๏Šฉ, sinsinsin(3๐œƒ)=3๐œƒโˆ’4๐œƒ๏Šฉ
  • Ecoscoscos(3๐œƒ)=โˆ’2๐œƒ+3๐œƒ๏Šฉ, sinsinsin(3๐œƒ)=3๐œƒโˆ’2๐œƒ๏Šฉ

Q4:

Using Eulerโ€™s formula, express sin๏Šซ๐œƒ in the form ๐‘Ž(5๐œƒ)+๐‘(3๐œƒ)+๐‘(๐œƒ)sinsinsin, where ๐‘Ž, ๐‘, and ๐‘ are constants to be found.

  • Asinsinsinsin๏Šซ๐œƒ=116((5๐œƒ)โˆ’5(3๐œƒ)+10(๐œƒ))
  • Bsinsinsinsin๏Šซ๐œƒ=132((5๐œƒ)โˆ’5(3๐œƒ)+10(๐œƒ))
  • Csinsinsinsin๏Šซ๐œƒ=(5๐œƒ)โˆ’5(3๐œƒ)+10(๐œƒ)
  • Dsinsinsinsin๏Šซ๐œƒ=116((5๐œƒ)+10(3๐œƒ)โˆ’5(๐œƒ))
  • Esinsinsinsin๏Šซ๐œƒ=132((5๐œƒ)+10(3๐œƒ)โˆ’5(๐œƒ))

Q5:

Express cos๐œƒ and sin๐œƒ in terms of ๐‘’๏ƒ๏ผ and ๐‘’๏Šฑ๏ƒ๏ผ.

  • Acos๐œƒ=12๏€น๐‘’+๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ, sin๐œƒ=12๐‘–๏€น๐‘’โˆ’๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ
  • Bcos๐œƒ=12๏€น๐‘’โˆ’๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ, sin๐œƒ=12๐‘–๏€น๐‘’+๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ
  • Ccos๐œƒ=12๐‘’๏ƒ๏ผ, sin๐œƒ=12๐‘–๐‘’๏Šฑ๏ƒ๏ผ
  • Dcos๐œƒ=12๐‘–๏€น๐‘’โˆ’๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ, sin๐œƒ=12๏€น๐‘’+๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ
  • Ecos๐œƒ=12๐‘–๏€น๐‘’+๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ, sin๐œƒ=12๏€น๐‘’โˆ’๐‘’๏…๏ƒ๏ผ๏Šฑ๏ƒ๏ผ

Q6:

Using Eulerโ€™s formula, express cos๏Šช๐œƒ in the form ๐‘Ž(4๐œƒ)+๐‘(2๐œƒ)+๐‘coscos, where ๐‘Ž, ๐‘, and ๐‘ are constants to be found.

  • Acoscoscos๏Šช๐œƒ=116(4(4๐œƒ)+(2๐œƒ)+6)
  • Bcoscoscos๏Šช๐œƒ=18((4๐œƒ)+4(2๐œƒ)+6)
  • Ccoscoscos๏Šช๐œƒ=116(6(4๐œƒ)+8(2๐œƒ)+1)
  • Dcoscoscos๏Šช๐œƒ=116((4๐œƒ)+4(2๐œƒ)+6)
  • Ecoscoscos๏Šช๐œƒ=18((4๐œƒ)+4(2๐œƒ)+3)

Q7:

Using Eulerโ€™s formula, express ๐‘’๏Šซ๏ƒ๏ผ in terms of sine and cosine.

  • Acossin(5๐œƒ)โˆ’๐‘–(5๐œƒ)
  • B5๐œƒ+5๐‘–๐œƒcossin
  • Ccossin(5๐œƒ)+๐‘–(5๐œƒ)
  • Dsincos(5๐œƒ)โˆ’๐‘–(5๐œƒ)
  • E5๐œƒโˆ’5๐‘–๐œƒcossin

Q8:

What trigonometric identities can be derived by applying Eulerโ€™s identity to ๐‘’๏ƒ(๏ผ๏Šฑ๏ŽŠ)?

  • Acoscoscossinsin(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘โˆ’๐œƒ๐œ‘, sincossinsincos(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘+๐œƒ๐œ‘
  • Bcossincoscossin(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘โˆ’๐œƒ๐œ‘, sincoscossinsin(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘+๐œƒ๐œ‘
  • Ccoscoscossinsin(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘+๐œƒ๐œ‘, sinsincoscossin(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘โˆ’๐œƒ๐œ‘
  • Dcoscossinsincos(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘+๐œƒ๐œ‘, sincoscossinsin(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘โˆ’๐œƒ๐œ‘
  • Ecoscossinsincos(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘+๐œƒ๐œ‘, sincossinsincos(๐œƒโˆ’๐œ‘)=๐œƒ๐œ‘โˆ’๐œƒ๐œ‘

Q9:

Use Eulerโ€™s formula to express ๐‘’๏Šฑ๏ƒ๏ผ in terms of sine and cosine.

  • A๐‘’=๐œƒ+๐‘–๐œƒ๏Šฑ๏ƒ๏ผcossin
  • B๐‘’=๐œƒโˆ’๐‘–๐œƒ๏Šฑ๏ƒ๏ผsincos
  • C๐‘’=โˆ’๐œƒ+๐‘–๐œƒ๏Šฑ๏ƒ๏ผsincos
  • D๐‘’=โˆ’๐œƒโˆ’๐‘–๐œƒ๏Šฑ๏ƒ๏ผcossin
  • E๐‘’=๐œƒโˆ’๐‘–๐œƒ๏Šฑ๏ƒ๏ผcossin

Given that ๐‘’๐‘’=1๏ƒ๏ผ๏Šฑ๏ƒ๏ผ, what trigonometric identity can be derived by expanding the exponentials in terms of trigonometric functions?

  • Acossincos๏Šจ๏Šจ๏Šจ๐œƒโˆ’๐œƒโ‰ก๐œƒ
  • Bsincos๐œƒ+๐œƒโ‰ก1
  • Csincos๏Šจ๏Šจ๐œƒ+๐œƒโ‰ก1
  • Dsincos๏Šจ๏Šจ๐œƒ+๐œƒโ‰กโˆ’1
  • Ecossin๏Šจ๏Šจ๐œƒโˆ’๐œƒโ‰กโˆ’1

Q10:

Use Eulerโ€™s formula to derive a formula for cos6๐œƒ and sin6๐œƒ in terms of sin๐œƒ and cos๐œƒ.

  • Acoscossincossincossin6๐œƒ=6๐œƒ๐œƒ+20๐œƒ๐œƒโˆ’6๐œƒ๐œƒ๏Šซ๏Šฉ๏Šฉ๏Šซ, sincoscossincossinsin6๐œƒ=๐œƒ+15๐œƒ๐œƒโˆ’15๐œƒ๐œƒโˆ’๐œƒ๏Šฌ๏Šช๏Šจ๏Šจ๏Šช๏Šฌ
  • Bcoscoscossincossinsin6๐œƒ=๐œƒ+15๐œƒ๐œƒ+15๐œƒ๐œƒ+๐œƒ๏Šฌ๏Šช๏Šจ๏Šจ๏Šช๏Šฌ, sincossincossincossin6๐œƒ=6๐œƒ๐œƒ+20๐œƒ๐œƒ+6๐œƒ๐œƒ๏Šซ๏Šฉ๏Šฉ๏Šซ
  • Ccoscoscossincossinsin6๐œƒ=โˆ’๐œƒโˆ’15๐œƒ๐œƒโˆ’15๐œƒ๐œƒโˆ’๐œƒ๏Šฌ๏Šช๏Šจ๏Šจ๏Šช๏Šฌ, sincossincossincossin6๐œƒ=โˆ’6๐œƒ๐œƒโˆ’20๐œƒ๐œƒโˆ’6๐œƒ๐œƒ๏Šซ๏Šฉ๏Šฉ๏Šซ
  • Dcoscoscossincossinsin6๐œƒ=๐œƒ+15๐œƒ๐œƒโˆ’15๐œƒ๐œƒโˆ’๐œƒ๏Šฌ๏Šช๏Šจ๏Šจ๏Šช๏Šฌ, sincossincossincossin6๐œƒ=6๐œƒ๐œƒ+20๐œƒ๐œƒโˆ’6๐œƒ๐œƒ๏Šซ๏Šฉ๏Šฉ๏Šซ
  • Ecoscoscossincossinsin6๐œƒ=๐œƒโˆ’15๐œƒ๐œƒ+15๐œƒ๐œƒโˆ’๐œƒ๏Šฌ๏Šช๏Šจ๏Šจ๏Šช๏Šฌ, sincossincossincossin6๐œƒ=6๐œƒ๐œƒโˆ’20๐œƒ๐œƒ+6๐œƒ๐œƒ๏Šซ๏Šฉ๏Šฉ๏Šซ

Hence, express tan6๐œƒ in terms of tan๐œƒ.

  • Atantantantantantantan6๐œƒ=6๐œƒ+20๐œƒโˆ’6๐œƒ1+15๐œƒโˆ’15๐œƒโˆ’๐œƒ๏Šฉ๏Šซ๏Šจ๏Šช๏Šฌ
  • Btantantantantantantan6๐œƒ=1+15๐œƒโˆ’15๐œƒโˆ’๐œƒ6๐œƒ+20๐œƒโˆ’6๐œƒ๏Šจ๏Šช๏Šฌ๏Šฉ๏Šซ
  • Ctantantantantantantan6๐œƒ=6๐œƒโˆ’20๐œƒ+6๐œƒ1โˆ’15๐œƒ+15๐œƒโˆ’๐œƒ๏Šฉ๏Šซ๏Šจ๏Šช๏Šฌ
  • Dtantantantantantantan6๐œƒ=โˆ’6๐œƒโˆ’20๐œƒโˆ’6๐œƒโˆ’1โˆ’15๐œƒโˆ’15๐œƒโˆ’๐œƒ๏Šฉ๏Šซ๏Šจ๏Šช๏Šฌ
  • Etantantantantantantan6๐œƒ=6๐œƒ+20๐œƒ+6๐œƒ1+15๐œƒ+15๐œƒ+๐œƒ๏Šฉ๏Šซ๏Šจ๏Šช๏Šฌ

Practice Means Progress

Boost your grades with free daily practice questions. Download Nagwa Practice today!

scan me!

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.