Worksheet: Simplifying Rational Functions

In this worksheet, we will practice simplifying rational functions and finding their domains.

Q1:

Simplify the function ๐‘“(๐‘ฅ)=๐‘ฅ+2๐‘ฅ๐‘ฅโˆ’4๏Šจ๏Šจ, and find its domain.

  • A ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ ๐‘ฅ โˆ’ 2 , domain =โ„โˆ’{2}
  • B ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ ๐‘ฅ + 2 , domain =โ„โˆ’{โˆ’2}
  • C ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ ๐‘ฅ โˆ’ 2 , domain =โ„โˆ’{โˆ’2,2}
  • D ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ ๐‘ฅ + 2 , domain =โ„โˆ’{โˆ’2,2}
  • E ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 2 ๐‘ฅ ( ๐‘ฅ + 2 ) ( ๐‘ฅ โˆ’ 2 ) ๏Šจ , domain =โ„โˆ’{โˆ’2,2}

Q2:

Simplify the function ๐‘›(๐‘ฅ)=๐‘ฅ+1๐‘ฅ+3๐‘ฅ+2๏Šจ and find its domain.

  • A ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 1 ( ๐‘ฅ โˆ’ 1 ) ( ๐‘ฅ โˆ’ 2 ) , domain =โ„โˆ’{1,2}
  • B ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ โˆ’ 2 , domain =โ„โˆ’{โˆ’1,2}
  • C ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ + 2 , domain =โ„โˆ’{โˆ’2}
  • D ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ โˆ’ 2 , domain =โ„โˆ’{2}
  • E ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ + 2 , domain =โ„โˆ’{โˆ’1,โˆ’2}

Q3:

Given the function ๐‘“(๐‘ฅ)=74๐‘ฅโˆ’81+19๐‘ฅโˆ’2๐‘ฅ๏Šจ๏Šจ, evaluate ๐‘“(3).

  • A ๐‘“ ( 3 ) = โˆ’ 2 4 5
  • B ๐‘“ ( 3 ) = โˆ’ 2 9
  • C ๐‘“ ( 3 ) = 3 4 4 5
  • D ๐‘“ ( 3 ) = 8 4 5

Q4:

Simplify the function ๐‘“(๐‘ฅ)=7๐‘ฅ+43๐‘ฅ+67๐‘ฅ+50๐‘ฅ+7๏Šจ๏Šจ, and find its domain.

  • A ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 6 ๐‘ฅ โˆ’ 7 , domain =โ„โˆ’๏ฌโˆ’17,โˆ’7๏ธ
  • B ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 6 ๐‘ฅ + 7 , domain =โ„โˆ’{โˆ’7}
  • C ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 6 ๐‘ฅ โˆ’ 7 , domain =โ„โˆ’{โˆ’7}
  • D ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 6 ๐‘ฅ + 7 , domain =โ„โˆ’๏ฌโˆ’17,โˆ’7๏ธ
  • E ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 6 ๐‘ฅ + 7 , domain =โ„โˆ’๏ฌโˆ’17,โˆ’7๏ธ

Q5:

Given that ๐‘›(๐‘ฅ)=๐‘ฅโˆ’5๐‘ฅ+5๏Šง and ๐‘›(๐‘ฅ)=๐‘ฅโˆ’5๐‘ฅ๐‘ฅ+5๐‘ฅ๏Šจ๏Šจ๏Šจ, find the largest set on which the functions ๐‘›๏Šง and ๐‘›๏Šจ are equal.

  • A โ„ โˆ’ { 0 , 5 }
  • B โ„ โˆ’ { 5 }
  • C โ„ โˆ’ { โˆ’ 5 }
  • D โ„ โˆ’ { โˆ’ 5 , 0 , 5 }
  • E โ„ โˆ’ { โˆ’ 5 , 0 }

Q6:

Given the functions ๐‘›(๐‘ฅ)=๐‘ฅ๐‘ฅโˆ’10๐‘ฅ๏Šง๏Šจ and ๐‘›(๐‘ฅ)=1๐‘ฅโˆ’10๏Šจ, what is the set of values on which ๐‘›=๐‘›๏Šง๏Šจ?

  • A โ„ โˆ’ { 1 0 }
  • B โ„ โˆ’ { 0 , 1 0 }
  • C โ„ โˆ’ { โˆ’ 1 0 , 0 }
  • D โ„ โˆ’ { 0 }
  • E { 0 }

Q7:

Which of the following statements describes when two functions ๐‘›๏Šง and ๐‘›๏Šจ are equal?

  • Athe domain of ๐‘›=๏Šง the domain of ๐‘›๏Šจ and ๐‘›(๐‘ฅ)=๐‘›(๐‘ฅ)๏Šง๏Šจ for each ๐‘ฅ in the common domain
  • B ๐‘› ( ๐‘ฅ ) = ๐‘› ( ๐‘ฅ ) ๏Šง ๏Šจ
  • Cthe domain of ๐‘›=๏Šง the domain of ๐‘›๏Šจ
  • Dthe domain of ๐‘›=๏Šง the domain of ๐‘›๏Šจ and ๐‘›(๐‘ฅ)โ‰ ๐‘›(๐‘ฅ)๏Šง๏Šจ

Q8:

Simplify the function ๐‘›(๐‘ฅ)=๐‘ฅ+1(๐‘ฅ+1)(๐‘ฅโˆ’3)๏Šฉ and find its domain.

  • A ๐‘› ( ๐‘ฅ ) = ( ๐‘ฅ + 1 ) ๐‘ฅ โˆ’ 3 ๏Šจ , domain =โ„โˆ’{โˆ’1,3}
  • B ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ ๐‘ฅ + 1 ๐‘ฅ โˆ’ 3 ๏Šจ , domain =โ„โˆ’{3}
  • C ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + ๐‘ฅ + 1 ๐‘ฅ โˆ’ 3 ๏Šจ , domain =โ„โˆ’{โˆ’1,3}
  • D ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ ๐‘ฅ + 1 ๐‘ฅ โˆ’ 3 ๏Šจ , domain =โ„โˆ’{โˆ’1,3}
  • E ๐‘› ( ๐‘ฅ ) = ( ๐‘ฅ + 1 ) ๐‘ฅ โˆ’ 3 ๏Šจ , domain =โ„โˆ’{3}

Q9:

Simplify the function ๐‘“(๐‘ฅ)=๐‘ฅโˆ’81๐‘ฅ+729๏Šจ๏Šฉ and find its domain.

  • A ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 9 ๐‘ฅ โˆ’ 9 ๐‘ฅ + 8 1 ๏Šจ , domain =โ„โˆ’{9}
  • B ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 9 ๐‘ฅ + 9 ๐‘ฅ + 8 1 ๏Šจ , domain =โ„โˆ’{โˆ’9}
  • C ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 9 ๐‘ฅ โˆ’ 9 ๐‘ฅ + 8 1 ๏Šจ , domain =โ„
  • D ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 9 ๐‘ฅ + 9 ๐‘ฅ + 8 1 ๏Šจ , domain =โ„
  • E ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 9 ๐‘ฅ โˆ’ 9 ๐‘ฅ + 8 1 ๏Šจ , domain =โ„โˆ’{โˆ’9}

Q10:

Simplify the function ๐‘›(๐‘ฅ)=๐‘ฅโˆ’125๐‘ฅ+5๐‘ฅ+25๏Šฌ๏Šช๏Šจ, and find its domain.

  • A ๐‘› ( ๐‘ฅ ) = ๏€ป ๐‘ฅ โˆ’ โˆš 5 ๏‡ ๏€ป ๐‘ฅ + โˆš 5 ๏‡ , domain =โ„โˆ’{5}
  • B ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 5 ๏Šจ , domain =โ„โˆ’{โˆ’5}
  • C ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 5 ๏Šจ , domain =โ„
  • D ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 5 ๏Šฉ , domain =โ„
  • E ๐‘› ( ๐‘ฅ ) = ๏€ป ๐‘ฅ โˆ’ โˆš 5 ๏‡ ๏€ป ๐‘ฅ + โˆš 5 ๏‡ , domain =โ„

Q11:

Simplify the function ๐‘“(๐‘ฅ)=๐‘ฅ+๐‘ฅโˆ’80๐‘ฅโˆ’4๏Šฉ๏Šจ, and find its domain.

  • A ๐‘ฅ โˆ’ 3 ๐‘ฅ + 2 0 ๏Šจ , domain =โ„โˆ’{4}
  • B ๐‘ฅ + 5 ๐‘ฅ + 2 0 ๏Šจ , domain =โ„โˆ’{4}
  • C ๐‘ฅ + 5 ๐‘ฅ + 2 0 ๏Šจ , domain =โ„
  • D ๐‘ฅ โˆ’ 3 ๐‘ฅ + 2 0 ๏Šจ , domain =โ„
  • E ๐‘ฅ + 4 ๐‘ฅ + 2 0 ๏Šจ , domain =โ„โˆ’{4}

Q12:

Simplify the function ๐‘›(๐‘ฅ)=๐‘ฅ+๐‘ฅโˆ’20๐‘ฅ+5๐‘ฅโˆ’16๐‘ฅโˆ’80๏Šจ๏Šฉ๏Šจ, and find its domain.

  • A ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ + 4 , domain =โ„โˆ’{4}
  • B ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ โˆ’ 4 , domain =โ„โˆ’{โˆ’4}
  • C ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ โˆ’ 4 , domain =โ„โˆ’{โˆ’5,โˆ’4,4}
  • D ๐‘› ( ๐‘ฅ ) = 1 ๐‘ฅ + 4 , domain =โ„โˆ’{โˆ’5,โˆ’4,4}
  • E ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 4 ๐‘ฅ + 1 6 ๏Šจ , domain =โ„โˆ’{โˆ’5,โˆ’4,4}

Q13:

Given that the algebraic fraction ๐‘›(๐‘ฅ)=8๐‘ฅ(๐‘ฅ+4)๐‘ฅ+๐‘Ž simplifies to ๐‘›(๐‘ฅ)=8๐‘ฅ, what is the value of ๐‘Ž?

Q14:

Given that ๐‘›(๐‘ฅ)=๐‘ฅ+64๐‘ฅโˆ’16๏Šง, ๐‘›(๐‘ฅ)=4๐‘ฅ+256๐‘ฅโˆ’16๏Šจ, and ๐‘›(๐‘ฅ)=๐‘›(๐‘ฅ)รท๐‘›(๐‘ฅ)๏Šง๏Šจ, find ๐‘›(โˆ’4) if possible.

  • A 1 6 4
  • B 1 2
  • C 1 4
  • D64
  • E4

Q15:

Given that ๐‘›(๐‘ฅ)=๐‘ฅ+12๐‘ฅ+36๐‘ฅโˆ’๐‘Ž๏Šจ๏Šจ simplifies to ๐‘›(๐‘ฅ)=๐‘ฅ+6๐‘ฅโˆ’6, what is the value of ๐‘Ž?

Q16:

Simplify the function ๐‘“(๐‘ฅ)=(๐‘ฅ+3)โˆ’36๐‘ฅ(๐‘ฅโˆ’3)๏Šจ, and find its domain.

  • A ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 9 ๐‘ฅ , domain =โ„โˆ’{0,โˆ’3}
  • B ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 9 ๐‘ฅ , domain =โ„โˆ’{0}
  • C ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 9 ๐‘ฅ , domain =โ„โˆ’{0,3}
  • D ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 9 ๐‘ฅ , domain =โ„โˆ’{0}
  • E ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 9 ๐‘ฅ , domain =โ„โˆ’{0,3}

Q17:

Given that the functions ๐‘›(๐‘ฅ)=8๐‘ฅ๐‘ฅ+๐‘๏Šง and ๐‘›(๐‘ฅ)=8๐‘ฅ+๐‘‘๐‘ฅ๐‘ฅ+๐‘๐‘ฅ+5๐‘ฅโˆ’15๏Šจ๏Šฉ๏Šฉ๏Šจ are equal, what are the values of ๐‘ and ๐‘‘?

  • A ๐‘ = 3 , ๐‘‘ = โˆ’ 4 0
  • B ๐‘ = โˆ’ 3 , ๐‘‘ = 5
  • C ๐‘ = 3 , ๐‘‘ = 4 0
  • D ๐‘ = โˆ’ 3 , ๐‘‘ = โˆ’ 4 0
  • E ๐‘ = โˆ’ 3 , ๐‘‘ = 4 0

Q18:

Which of the following functions are equal?

  • A ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 7 2 9 ๐‘ฅ + 9 ๐‘ฅ + 8 1 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ( ๐‘ฅ โˆ’ 9 ) ( ๐‘ฅ + 6 3 ) ๐‘ฅ + 6 3 ๐‘ฅ ๏Šจ ๏Šจ
  • B ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 7 2 9 ๐‘ฅ + 9 ๐‘ฅ + 8 1 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ( ๐‘ฅ โˆ’ 9 ) ๏€น ๐‘ฅ โˆ’ 6 3 ๏… ๐‘ฅ โˆ’ 6 3 ๐‘ฅ ๏Šจ ๏Šจ ๏Šฉ
  • C ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 7 2 9 ๐‘ฅ + 9 ๐‘ฅ + 8 1 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ( ๐‘ฅ โˆ’ 9 ) ( ๐‘ฅ + 6 3 ) ๐‘ฅ + 6 3 ๐‘ฅ ๏Šจ ๏Šฉ
  • D ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 7 2 9 ๐‘ฅ + 9 ๐‘ฅ + 8 1 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ( ๐‘ฅ โˆ’ 9 ) ๏€น ๐‘ฅ + 6 3 ๏… ๐‘ฅ + 6 3 ๐‘ฅ ๏Šจ ๏Šจ ๏Šฉ
  • E ๐‘› ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 7 2 9 ๐‘ฅ + 9 ๐‘ฅ + 8 1 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ( ๐‘ฅ โˆ’ 9 ) ( ๐‘ฅ โˆ’ 6 3 ) ๐‘ฅ โˆ’ 6 3 ๐‘ฅ ๏Šจ ๏Šฉ

Q19:

Simplify the function ๐‘“(๐‘ฅ)=๐‘ฅ+4๐‘ฅ+45๐‘ฅโˆ’20๐‘ฅ๏Šจ๏Šฉ and find its domain.

  • A ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 2 5 ๐‘ฅ ( ๐‘ฅ โˆ’ 2 ) , domain =โ„โˆ’{0,โˆ’2,2}
  • B ๐‘“ ( ๐‘ฅ ) = ( ๐‘ฅ + 2 ) 5 ๐‘ฅ ( ๐‘ฅ โˆ’ 4 ) ๏Šจ ๏Šจ , domain =โ„โˆ’{0,โˆ’2,2}
  • C ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 2 5 ๐‘ฅ ( ๐‘ฅ + 2 ) , domain =โ„โˆ’{0,โˆ’2}
  • D ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 2 5 ๐‘ฅ ( ๐‘ฅ + 2 ) , domain =โ„โˆ’{0,โˆ’2,2}
  • E ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 2 5 ๐‘ฅ ( ๐‘ฅ โˆ’ 2 ) , domain =โ„โˆ’{0,2}

Q20:

Which of the following functions are equal?

  • A ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 1 2 5 ๐‘ฅ โˆ’ 5 ๐‘ฅ + 2 5 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 3 ๐‘ฅ โˆ’ 1 0 ๐‘ฅ โˆ’ 2 ๐‘ฅ ๏Šจ ๏Šจ ๏Šฉ
  • B ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 1 2 5 ๐‘ฅ โˆ’ 5 ๐‘ฅ + 2 5 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 7 ๐‘ฅ + 1 0 ๐‘ฅ + 2 ๐‘ฅ ๏Šจ ๏Šจ ๏Šฉ
  • C ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 1 2 5 ๐‘ฅ โˆ’ 5 ๐‘ฅ + 2 5 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 5 ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 1 0 ๐‘ฅ โˆ’ 2 ๐‘ฅ ๏Šจ ๏Šฉ ๏Šจ ๏Šฉ
  • D ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 1 2 5 ๐‘ฅ โˆ’ 5 ๐‘ฅ + 2 5 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 7 ๐‘ฅ + 1 0 ๐‘ฅ + 2 ๐‘ฅ ๏Šจ ๏Šจ ๏Šจ
  • E ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 1 2 5 ๐‘ฅ โˆ’ 5 ๐‘ฅ + 2 5 ๐‘ฅ ๏Šง ๏Šฉ ๏Šฉ ๏Šจ , ๐‘› ( ๐‘ฅ ) = ๐‘ฅ + 5 ๐‘ฅ + 2 ๐‘ฅ + 1 0 ๐‘ฅ + 2 ๐‘ฅ ๏Šจ ๏Šฉ ๏Šจ ๏Šฉ

Q21:

Given that ๐‘›(๐‘ฅ)=๐‘ฅโˆ’๐‘Ž๐‘ฅโˆ’32๐‘ฅ+๐‘ฅโˆ’72๏Šจ๏Šจ, and the multiplicative inverse of ๐‘› is ๐‘ฅ+9๐‘ฅ+4, what is the value of ๐‘Ž?

Q22:

Given the functions ๐‘(๐‘ฅ)=3๐‘ฅโˆ’30๐‘ฅ(๐‘ฅ+10)(๐‘ฅโˆ’10)๏Šจ and ๐‘ž(๐‘ฅ)=3๐‘ฅ๐‘ฅ+10, what is the set of values on which ๐‘=๐‘ž?

  • A โ„ โˆ’ { 1 0 , โˆ’ 1 0 }
  • B โ„ โˆ’ { โˆ’ 1 0 , 0 }
  • C โ„ โˆ’ { 1 0 }
  • D โ„ โˆ’ { 0 , 1 0 }
  • E โ„ โˆ’ { โˆ’ 1 0 }

Q23:

Given that the multiplicative inverse of the function ๐‘›(๐‘ฅ)=2๐‘ฅ+10๐‘ฅ๐‘ฅ+14๐‘ฅ+๐‘Ž๏Šจ๏Šจ is ๐‘ฅ+92๐‘ฅ, find the value of ๐‘Ž.

Q24:

Determine the domain of the function ๐‘›(๐‘ฅ)=๐‘ฅโˆ’648๐‘ฅ+7๐‘ฅรท9๐‘ฅโˆ’117๐‘ฅ+36064๐‘ฅโˆ’49๏Šจ๏Šจ๏Šจ๏Šจ.

  • A โ„ โˆ’ ๏ฌ โˆ’ 7 8 , 0 , 7 8 ๏ธ
  • B โ„ โˆ’ { 0 , 5 }
  • C โ„ โˆ’ ๏ฌ โˆ’ 7 8 , 0 , 5 , 8 ๏ธ
  • D โ„ โˆ’ ๏ฌ โˆ’ 7 8 , 7 8 , 5 , 8 ๏ธ
  • E โ„ โˆ’ ๏ฌ โˆ’ 7 8 , 0 , 7 8 , 5 , 8 ๏ธ

Q25:

Simplify the function ๐‘“(๐‘ฅ)=๐‘ฅโˆ’4๐‘ฅโˆ’๐‘ฅโˆ’2๏Šจ๏Šจ and find its domain.

  • A ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 2 ๐‘ฅ + 1 , domain =โ„โˆ’{โˆ’1}
  • B ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 1 , domain =โ„โˆ’{1}
  • C ๐‘“ ( ๐‘ฅ ) = โˆ’ 4 โˆ’ ๐‘ฅ โˆ’ 2 , domain =โ„โˆ’{2,โˆ’1}
  • D ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ + 2 ๐‘ฅ + 1 , domain =โ„โˆ’{2,โˆ’1}
  • E ๐‘“ ( ๐‘ฅ ) = ๐‘ฅ โˆ’ 2 ๐‘ฅ โˆ’ 1 , domain =โ„โˆ’{โˆ’2,1}

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.