Lesson Worksheet: Inverse of a Function Mathematics

In this worksheet, we will practice finding the inverse of a function by changing the subject of the formula.

Q1:

Determine the inverse of 𝑓(𝑥)=13𝑥+2.

  • A𝑓(𝑥)=3(𝑥2)
  • B𝑓(𝑥)=13(𝑥+2)
  • C𝑓(𝑥)=13(𝑥2)
  • D𝑓(𝑥)=2(𝑥+3)

Q2:

Find the inverse of the function 𝑓(𝑥)=4𝑥.

  • A𝑓(𝑥)=4𝑥
  • B𝑓(𝑥)=𝑥4
  • C𝑓(𝑥)=𝑥4
  • D𝑓(𝑥)=4𝑥
  • E𝑓(𝑥)=4𝑥

Q3:

Find the inverse of the function 𝑓(𝑥)=2𝑥.

  • A𝑓(𝑥)=2𝑥
  • B𝑓(𝑥)=2𝑥
  • C𝑓(𝑥)=2+𝑥
  • D𝑓(𝑥)=𝑥2
  • E𝑓(𝑥)=(2𝑥)

Q4:

Determine the inverse function of 𝑓(𝑥)=(𝑥+6)5, where 𝑥6.

  • A𝑓(𝑥)=6𝑥+5
  • B𝑓(𝑥)=𝑥5+6
  • C𝑓(𝑥)=𝑥+56
  • D𝑓(𝑥)=6𝑥+5
  • E𝑓(𝑥)=𝑥6+5

Q5:

Find the inverse of the function 𝑓={(2,7),(2,4),(6,5),(10,2)}.

  • A𝑓={(2,7),(2,4),(6,5),(10,2)}
  • B𝑓=12,17,12,14,16,15,110,12
  • C𝑓=2,17,2,14,6,15,10,12
  • D𝑓={(7,2),(4,2),(5,6),(2,10)}
  • E𝑓={(10,2),(6,5),(2,4),(2,7)}

Q6:

Jacob is trying to find the inverse of 𝑓(𝑥)=𝑥7. He sets 𝑐=𝑥7 and then finds 𝑐=𝑥7 and then 𝑥=7+𝑐. What does Jacob determine 𝑓(𝑥) to be?

  • A𝑥+7
  • B𝑐+7
  • C𝑥+7
  • D𝑥7
  • E(𝑥7)

Q7:

Let 𝑓(𝑥)=3𝑥+5 and 𝑔(𝑥)=𝑥53. Is it true that 𝑓 is the inverse of 𝑔 and 𝑔 is the inverse of 𝑓?

  • AYes
  • BNo

Q8:

Find the inverse of the function 𝑓(𝑥)=6𝑥.

  • A𝑓(𝑥)=𝑥6
  • B𝑓(𝑥)=6𝑥
  • C𝑓(𝑥)=𝑥6
  • D𝑓(𝑥)=6𝑥
  • E𝑓(𝑥)=16𝑥

Q9:

What is the inverse of the function 𝑦=7𝑥5?

  • A7𝑦=5𝑥
  • B𝑦=𝑥57
  • C𝑦=7𝑥5
  • D𝑦=7𝑥+5
  • E𝑦=𝑥+57

Q10:

Determine the domain on which the function 𝑓(𝑥)=7𝑥 has an inverse.

  • A[0,7]
  • B(,0] or [0,)
  • C(,0]
  • D
  • E{7}

Q11:

If 𝑓 is the inverse function of the function 𝑓 then which of the following statements is true?

  • Arange of 𝑓= domain of 𝑓
  • Bdomain of 𝑓= range of 𝑓
  • Cdomain of 𝑓= domain of 𝑓
  • Drange of 𝑓= range of 𝑓
  • Edomain of 𝑓= range of 𝑓

Q12:

Find the inverse of the function 𝑓(𝑥)=2+𝑥+3.

  • A𝑓(𝑥)=(𝑥3)+2 where 𝑥3
  • B𝑓(𝑥)=12+𝑥+3 where 𝑥3
  • C𝑓(𝑥)=(𝑥+2)+3 where 𝑥2
  • D𝑓(𝑥)=(𝑥2)3 where 𝑥2
  • E𝑓(𝑥)=2+𝑥3 where 𝑥3

Q13:

Find the inverse of the function 𝑓(𝑥)=𝑥+6𝑥+11, where 𝑥3.

  • A𝑓(𝑥)=𝑥32
  • B𝑓(𝑥)=𝑥+2+3
  • C𝑓(𝑥)=𝑥23
  • D𝑓(𝑥)=3𝑥2
  • E𝑓(𝑥)=3𝑥2

Q14:

Find 𝑓(𝑥) for 𝑓(𝑥)=𝑥+3 and state the domain.

  • A𝑓(𝑥)=(𝑥3) for 𝑥3
  • B𝑓(𝑥)=(𝑥3) for 𝑥3
  • C𝑓(𝑥)=(𝑥3) for 𝑥3
  • D𝑓(𝑥)=(𝑥2) for 𝑥2

Q15:

Find 𝑓(𝑥) for 𝑓(𝑥)=3+𝑥.

  • A𝑓(𝑥)=𝑥3
  • B𝑓(𝑥)=(𝑥3)
  • C𝑓(𝑥)=(𝑥3)
  • D𝑓(𝑥)=3𝑥

Q16:

The figure below represents the function 𝑓𝑋𝑌:. Find the value of 𝑓(4).

  • A10
  • B13
  • C8
  • D4

Q17:

The solid part of the following graph of 𝑓(𝑥)=|3(𝑥+3)| shows how we can restrict the domain to obtain an inverse.

What is the domain of the inverse?

  • A𝑥>0
  • B𝑥3
  • C𝑥3
  • D𝑥0
  • E𝑥<0

What is the range of the inverse?

  • A𝑥>0
  • B𝑥3
  • C𝑥0
  • D𝑥3
  • E𝑥<3

Give a formula for the inverse.

  • A𝑓(𝑥)=𝑥33
  • B𝑓(𝑥)=𝑥3+3
  • C𝑓(𝑥)=𝑥33
  • D𝑓(𝑥)=𝑥3+3
  • E𝑓(𝑥)=3𝑥13

Q18:

The following tables are partially filled for functions 𝑓 and 𝑔 that are inverses of each other. Determine the values of 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒.

𝑥1234𝑑6
𝑓(𝑥)31𝑎1910114
𝑥312619101𝑒
𝑔(𝑥)12𝑏𝑐56
  • A𝑎=26, 𝑏=3, 𝑐=4, 𝑑=5, 𝑒=14
  • B𝑎=2, 𝑏=19, 𝑐=4, 𝑑=5, 𝑒=14
  • C𝑎=2, 𝑏=19, 𝑐=4, 𝑑=1, 𝑒=6
  • D𝑎=26, 𝑏=19, 𝑐=4, 𝑑=1, 𝑒=14
  • E𝑎=26, 𝑏=3, 𝑐=4, 𝑑=1, 𝑒=6

Q19:

Does the function 𝑓, where 𝑓={(5,3),(9,7),(11,10)}, have an inverse?

  • AYes
  • BNo

Q20:

The figure below represents the function 𝑓. Find the value of 𝑓(𝑑)+4𝑓(𝑏).

Q21:

Does every function which is strictly increasing on its domain have an inverse function?

  • ANo
  • BYes

Q22:

Find the inverse of the function represented by the following table:

𝑥3113
𝑓(𝑥)1619112115
  • A𝑓=16,3,19,1,112,1,115,3
  • B𝑓=3,16,1,19,1,112,3,115
  • C𝑓=16,3,19,1,112,1,115,3
  • D𝑓=3,16,1,19,1,112,3,115
  • E𝑓={(3,6),(1,9),(1,12),(3,15)}

Q23:

Does an odd function always have an inverse function?

  • AYes
  • BNo

Q24:

Given that 𝑓={(6,2),(3,𝑏)} is the inverse of the function 𝑓={(8,3),(𝑎,6)}, what is the value of 𝑎𝑏?

Q25:

Does an even function always have an inverse function?

  • ANo
  • BYes

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.