Lesson Worksheet: Möbius Transformations Mathematics

In this worksheet, we will practice interpreting möbius transformation in the complex plane.

Q1:

Consider the MΓΆbius transformations 𝑇(𝑧)=𝑧+3π‘–π‘–π‘§βˆ’2 and 𝑇(𝑧)=𝑖𝑧+12π‘§οŠ¨, where 𝑧≠2𝑖 or 0.

Write an expression for the composition π‘‡βˆ˜π‘‡(𝑧).

  • Aπ‘‡βˆ˜π‘‡(𝑧)=2π‘–π‘§βˆ’52𝑧+6π‘–οŠ§οŠ¨
  • Bπ‘‡βˆ˜π‘‡(𝑧)=7𝑖𝑧+1(βˆ’4+𝑖)𝑧+1
  • Cπ‘‡βˆ˜π‘‡(𝑧)=(1+𝑖)𝑧+1+3𝑖(2+𝑖)π‘§βˆ’2
  • Dπ‘‡βˆ˜π‘‡(𝑧)=7𝑖𝑧+1βˆ’5𝑧+π‘–οŠ§οŠ¨
  • Eπ‘‡βˆ˜π‘‡(𝑧)=(1+𝑖)π‘§βˆ’2+3𝑖2𝑧+6π‘–οŠ§οŠ¨

Q2:

A transformation that maps the 𝑧-plane to the 𝑀-plane is defined by π‘‡βˆΆπ‘§β†¦1𝑧, where 𝑧≠0.

Find an equation for the image of |𝑧|=2 under the transformation.

  • A|𝑀|=1
  • B|𝑀|=12
  • C𝑀=2
  • D𝑀=12
  • E|𝑀|=2

Find an equation for the image of arg(𝑧)=3πœ‹4.

  • Aarg(𝑀)=πœ‹4
  • Barg(𝑀)=βˆ’3πœ‹4
  • Carg(𝑀)=43πœ‹
  • Darg(𝑀)=βˆ’πœ‹4
  • Earg(𝑀)=3πœ‹4

Find a Cartesian equation for the image of Im(𝑧)=2.

  • A𝑒+𝑣+14=116
  • B𝑒+𝑣+12=14
  • C2𝑒+ο€Ό2𝑣+14=116
  • D𝑣=0
  • E𝑣=12

Find a Cartesian equation for the image of |π‘§βˆ’π‘–|=12.

  • A𝑒+𝑣+43=49
  • B𝑒+𝑣+83=0
  • C𝑒+𝑣+43=0
  • D𝑒+𝑣=0
  • E𝑒+𝑣+43=49

Q3:

A transformation that maps the 𝑧-plane to the 𝑀-plane is defined by π‘‡βˆΆπ‘§β†¦13π‘§βˆ’6𝑖.

Find the Cartesian equation for the image of |𝑧+2|=3.

  • Aο€Όπ‘’βˆ’23+ο€Όπ‘£βˆ’23=1
  • Bο€Όπ‘’βˆ’23+𝑣+23=1
  • Cπ‘’βˆ’43𝑒+π‘£βˆ’43π‘£βˆ’16π‘’π‘£βˆ’19=0
  • Dο€Όπ‘’βˆ’23+𝑣+23=0
  • Eο€Όπ‘’βˆ’221+𝑣+221=5147

Find the Cartesian equation for the image of Re(𝑧)=5.

  • Aο€Όπ‘’βˆ’130οˆβˆ’π‘£=1900
  • Bο€Όπ‘’βˆ’115+𝑣=1225
  • Cο€Όπ‘’βˆ’130+𝑣=1900
  • Dο€Όπ‘’βˆ’115οˆβˆ’π‘£=1225
  • E𝑒+𝑣=5

Q4:

Which of the following MΓΆbius transformations maps |𝑧|=1 to the real axis?

  • A𝑇(𝑧)=𝑖𝑧+𝑖𝑧+1
  • B𝑇(𝑧)=π‘–π‘§βˆ’2𝑖𝑧+2
  • C𝑇(𝑧)=π‘–π‘§βˆ’π‘–π‘§+1
  • D𝑇(𝑧)=π‘§βˆ’1𝑧+1
  • E𝑇(𝑧)=π‘§βˆ’2𝑧+2

Q5:

A transformation, 𝑇, that maps the 𝑧-plane to the 𝑀-plane is given by 𝑇(𝑧)=(2+𝑖)𝑧+4π‘§βˆ’π‘–, where 𝑧≠𝑖.

Find a Cartesian equation for the image of the imaginary axis under the transformation 𝑇.

  • A(π‘’βˆ’1)+𝑣+52=134
  • B𝑣=4βˆ’32𝑒
  • C𝑣=32π‘’βˆ’4
  • D𝑣=32𝑒+4
  • E(π‘’βˆ’1)+𝑣+52=12

Hence, find the image of the region Im(𝑧)>0 under the transformation 𝑇.

  • A𝑣>4βˆ’32𝑒
  • B(π‘’βˆ’1)+𝑣+52>134
  • C𝑣<4βˆ’32𝑒
  • D𝑣>32π‘’βˆ’4
  • E(π‘’βˆ’1)+𝑣+52<134

Q6:

Suppose πΏβˆΆβ„β†’β„ is a linear transformation with 𝐿(2)=7. What is the value of 𝐿(1)?

  • A72
  • BThis depends on the definition of 𝐿.
  • C1
  • D27
  • E7

Q7:

Suppose πΏβˆΆβ„β†’β„ is a linear transformation. What is the value of 𝐿(0)?

Q8:

Which of the following MΓΆbius transformations, 𝑇, maps βˆ’2 to 0, 0 to βˆ’3, and has limο™β†’βˆžπ‘‡(𝑧)=βˆ’3𝑖?

  • A𝑇(𝑧)=π‘–π‘§βˆ’33𝑧+6
  • B𝑇(𝑧)=𝑧+2π‘–βˆ’3π‘–π‘§βˆ’6𝑖
  • C𝑇(𝑧)=βˆ’3π‘–π‘§βˆ’6𝑖𝑧+2𝑖
  • D𝑇(𝑧)=3𝑧+6π‘–π‘§βˆ’3
  • E𝑇(𝑧)=βˆ’βˆ’π‘§+οŠ§οŠ©οƒο™οŠ§οŠ¬οƒοŠ§οŠ¨οƒ

Q9:

Find the equation for the image of arg(𝑧)=πœ‹2 under the transformation 𝑀=𝑧7π‘§βˆ’2𝑖, 𝑧≠2𝑖7, which maps the 𝑧-plane to the 𝑀-plane.

  • Aarg(𝑀)=πœ‹2
  • Barg(𝑀)=βˆ’πœ‹2
  • Carg(𝑀)=0
  • Darg(𝑀)=2πœ‹3
  • Earg(𝑀)=πœ‹6

Q10:

A transformation, 𝑇, that maps the 𝑧-plane to the 𝑀-plane is given by 𝑇(𝑧)=𝑖𝑧+2(2βˆ’π‘–)𝑧+4𝑖, where π‘§β‰ βˆ’4𝑖2βˆ’π‘–. Find the image of the region |𝑧+2𝑖|≀|π‘§βˆ’3βˆ’π‘–| under the transformation 𝑇.

  • A𝑒+109+ο€Όπ‘£βˆ’19β‰₯89
  • B𝑒+109+ο€Όπ‘£βˆ’19οˆβ‰€89
  • C𝑒+109+ο€Όπ‘£βˆ’19β‰₯7481
  • Dο€Όπ‘’βˆ’49+ο€Όπ‘£βˆ’13β‰₯3481
  • E𝑒+109+𝑣+19οˆβ‰€89

Practice Means Progress

Boost your grades with free daily practice questions. Download Nagwa Practice today!

scan me!

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.