# Worksheet: Internal energy of Monatomic and Polyatomic Gasses

In this worksheet, we will practice calculating the division of a gas’s internal energy between translational, rotational, and vibrational energies according to its particles' degrees of freedom.

**Q2: **

Two monatomic ideal gases A and B are at the same temperature. 1.0 g of gas A has the same internal energy as 0.10 g of gas B.

What is the ratio of the number of moles in gas A to the number of moles in gas B?

- A
- B
- C
- D
- E

What is the ratio of the atomic mass of gas A to the atomic mass of gas B?

- A
- B
- C
- D
- E

**Q3: **

To give a helium atom nonzero angular momentum requires 21.2 eV of energy, meaning that 21.2 eV is the difference between the energies of helium’s ground state and of the lowest-energy state in which a helium atom has nonzero angular momentum. Find the lowest temperature at which helium atoms possess angular momentum if the energy required to give a helium atom nonzero momentum equals Boltzmann’s constant multiplied by .

- A K
- B K
- C K
- D K
- E K

**Q4: **

What is the internal energy of 6.00 mol of an ideal monatomic gas which has a temperature of ?

- A J
- B J
- C J
- D J
- E J

**Q5: **

0.82 mol of dilute carbon dioxide at a pressure of 1.80 atm occupies a volume of 58 L. What is the internal energy of the gas?

**Q6: **

An ideal gas at room temperature has a pressure of 0.802 atm and a volume of 13.00 L. The gas is compressed adiabatically and quasi-statically until its pressure is 3.610 atm and its volume is 5.27 L. How many degrees of freedom does the gas have?

**Q7: **

Calculate the internal energy of 82 g of helium at a temperature of .