Worksheet: Equations of Vertical and Horizontal Lines

In this worksheet, we will practice writing the equations of vertical and horizontal lines.

Q1:

Which of the following equations represents a line parallel to the π‘₯-axis?

  • Aβˆ’π‘₯βˆ’5𝑦=3
  • Bβˆ’2π‘₯βˆ’π‘¦=0
  • Cβˆ’9π‘¦βˆ’7=0
  • D8π‘₯+3𝑦=βˆ’9

Q2:

Determine the equation of the line parallel to the π‘₯-axis that passes through ο€Όβˆ’12,4.

  • Aπ‘₯=4
  • B𝑦=4
  • C𝑦=βˆ’12
  • Dπ‘₯=βˆ’12

Q3:

Complete the equation of the straight line coincident to the π‘₯-axis: 𝑓(π‘₯)=.

Q4:

Which of the following equations represents a line parallel to the 𝑦-axis?

  • A5π‘₯βˆ’9=0
  • Bβˆ’3π‘₯+9𝑦=0
  • C9π‘₯+𝑦=βˆ’4
  • D7π‘₯+6𝑦=4

Q5:

Determine the Cartesian equation of the straight line passing through the point (βˆ’5,βˆ’5) and parallel to the 𝑦-axis.

  • Aπ‘₯+5=0
  • B𝑦+5=0
  • Cπ‘₯βˆ’5=0
  • Dπ‘¦βˆ’5=0

Q6:

Find the equations of the lines parallel to the two axes that pass through (βˆ’2,βˆ’10).

  • Aπ‘₯=βˆ’2, 𝑦=βˆ’10
  • Bπ‘₯=βˆ’10, 𝑦=βˆ’2
  • Cπ‘₯=10, 𝑦=2
  • Dπ‘₯=2, 𝑦=10

Q7:

Which of the following equations represents a line parallel to the 𝑦-axis?

  • A5π‘₯βˆ’1=0
  • B3π‘₯+𝑦=0
  • C3π‘₯+𝑦=1
  • D9π‘₯+7𝑦=βˆ’1

Q8:

Determine the equation of the line parallel to the π‘₯-axis that passes through (2,βˆ’1).

  • Aπ‘₯=βˆ’1
  • B𝑦=βˆ’1
  • C𝑦=2
  • Dπ‘₯=2

Q9:

Determine the Cartesian equation of the straight line passing through the point (1,βˆ’4) and parallel to the 𝑦-axis.

  • Aπ‘₯βˆ’1=0
  • B𝑦+4=0
  • Cπ‘₯+1=0
  • Dπ‘¦βˆ’4=0

Q10:

Find the equations of the lines parallel to the two axes that pass through (βˆ’5,9).

  • Aπ‘₯=βˆ’5, 𝑦=9
  • Bπ‘₯=9, 𝑦=βˆ’5
  • Cπ‘₯=βˆ’9, 𝑦=5
  • Dπ‘₯=5, 𝑦=βˆ’9

Q11:

Find the equations of the lines parallel to the two axes that pass through (βˆ’19,20).

  • Aπ‘₯=βˆ’19, 𝑦=20
  • Bπ‘₯=20, 𝑦=βˆ’19
  • Cπ‘₯=βˆ’20, 𝑦=19
  • Dπ‘₯=19, 𝑦=βˆ’20

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.