The portal has been deactivated. Please contact your portal admin.

Lesson Worksheet: Geometric Applications of Vectors Mathematics

In this worksheet, we will practice using vector operations and vector properties to solve problems involving geometrical shapes.

Q1:

Fill in the blank: In triangle 𝐴𝐡𝐢, 𝐴𝐡+οƒŸπ΅πΆ=.

  • A𝐡𝐴
  • BοƒŸπΆπ΅
  • C𝐴𝐢
  • D𝐢𝐴
  • E𝐴𝐡

Q2:

Fill in the blank: In the parallelogram 𝐴𝐡𝐢𝐷, 𝐴𝐡+𝐴𝐷=.

  • A𝐴𝐢
  • B𝐢𝐷
  • C𝐡𝐷
  • D𝐢𝐴
  • EοƒŸπ΅πΆ

Q3:

Which of the following is equivalent to οƒ π΄π΅βˆ’οƒ π·π΅?

  • A𝐡𝐴
  • B𝐴𝐢
  • CοƒŸπ΅πΆ
  • D𝐷𝐢
  • E𝐷𝐴

Q4:

Given the information in the diagram below, find the value of 𝑛 such that 𝐴𝐷+𝐷𝐸=𝑛𝐴𝐢.

  • A67
  • B12
  • Cβˆ’12
  • Dβˆ’67

Q5:

In the triangle 𝐴𝐡𝐢, 𝐷∈𝐡𝐢, where 𝐡𝐷∢𝐷𝐢=2∢3. Given that 3𝐴𝐡+2𝐴𝐢=π‘˜οƒ π΄π·, find the value of π‘˜.

Q6:

Trapezoid 𝐴𝐡𝐢𝐷 has vertices 𝐴(4,14), 𝐡(4,βˆ’4), 𝐢(βˆ’12,βˆ’4), and 𝐷(βˆ’12,9). Given that 𝐴𝐡βˆ₯𝐷𝐢 and οƒ π΄π΅βŸ‚οƒŸπΆπ΅, find the area of that trapezoid.

Q7:

𝐴𝐡𝐢𝐷 is a rectangle, in which the coordinates of the points 𝐴, 𝐡, and 𝐢 are (βˆ’18,βˆ’2), (βˆ’18,βˆ’3), and (βˆ’8,π‘˜), respectively. Use vectors to find the value of π‘˜ and the coordinates of point 𝐷.

  • Aπ‘˜=βˆ’1, 𝐷(βˆ’8,βˆ’3)
  • Bπ‘˜=βˆ’2, 𝐷(βˆ’28,βˆ’2)
  • Cπ‘˜=βˆ’3, 𝐷(βˆ’8,βˆ’2)
  • Dπ‘˜=βˆ’1, 𝐷(βˆ’28,βˆ’2)
  • Eπ‘˜=βˆ’2, 𝐷(βˆ’8,βˆ’2)

Q8:

Complete the following: If 𝐴𝐡𝐢𝐷 is a quadrilateral and 𝐴𝐷=οƒŸπ΅πΆ and they are parallel, then the quadrilateral can always be classified as .

  • Aa kite
  • Ba parallelogram
  • Ca trapezoid
  • Da rectangle
  • Ean isosceles trapezoid

Q9:

𝐴𝐡𝐢𝐷 is a quadrilateral in which 𝐴(1,2), 𝐡(1,3), 𝐢(5,3), and 𝐷(5,2). Determine its type using vectors.

  • AParallelogram
  • BRectangle
  • CKite
  • DTrapezoid

Q10:

𝐴𝐡𝐢𝐷 is a square, in which the coordinates of the points 𝐴, 𝐡, and 𝐢 are (1,βˆ’8), (3,βˆ’10), and (5,βˆ’8). Use vectors to determine the coordinates of the point 𝐷 and the area of the square.

  • A𝐷(3,βˆ’6), area =8
  • B𝐷(1,10), area =340
  • C𝐷(9,βˆ’26), area =16
  • D𝐷(7,βˆ’10), area =8

This lesson includes 31 additional questions and 155 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.