Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.
Start Practicing

Worksheet: Determining the Type of the Improper Integrals and Evaluate It with a Discontinuous Integrand

Q1:

Determine whether the integral is convergent or divergent.

  • ADivergent
  • BConvergent

Q2:

Determine whether the integral is convergent or divergent.

  • Adivergent
  • Bconvergent

Q3:

The integral is convergent. What does it converge to?

  • A
  • B
  • C
  • D
  • E0

Q4:

The integral is convergent. What does it converge to?

  • A
  • B
  • C
  • D
  • E

Q5:

The integral is convergent. What does it converge to?

  • A
  • B6
  • C
  • D
  • E

Q6:

Determine whether the integral is convergent or divergent.

  • Adivergent
  • Bconvergent

Q7:

The integral is convergent. What does it converge to?

  • A
  • B
  • C
  • D
  • E

Q8:

The integral is convergent. What does it converge to?

  • A
  • B
  • C0
  • D
  • E

Q9:

Determine whether the integral is convergent or divergent.

  • Adivergent
  • Bconvergent

Q10:

The integral is convergent. What does it converge to?

Q11:

Determine whether the integral is convergent or divergent.

  • Adivergent
  • Bconvergent

Q12:

Determine whether the integral is convergent or divergent.

  • Adivergent
  • Bconvergent

Q13:

Determine whether the integral is convergent or divergent.

  • Adivergent
  • Bconvergent

Q14:

The integral is convergent. What does it converge to?

  • A
  • B2
  • C
  • D
  • E

Q15:

Consider the integral .

Find all possible values of for which the integral is convergent.

  • A
  • B
  • C
  • D
  • E

Evaluate the integral for those values of .

  • A
  • B
  • C
  • D
  • E

Q16:

Consider the integral .

Find all possible values of for which the integral is convergent.

  • A
  • B
  • C
  • D
  • E

Evaluate the integral for those values of .

  • A
  • B
  • C
  • D
  • E