Worksheet: Harmonic and p-Series

In this worksheet, we will practice finding the condition for which the p-series converges, and we will prove the divergence of the harmonic series using the integral test.

Q1:

If possible, find the sum of the series 2(𝑛+1)+23.

  • A3
  • B4
  • CThe series diverges.
  • D92
  • E72

Q2:

Determine whether the series 4ln converges or diverges.

Hint: 4ln is equal to 1𝑛ln.

  • AIt diverges.
  • BIt converges.

Q3:

Determine whether the series 1𝑛 converges or diverges.

  • AIt diverges.
  • BIt converges.

Q4:

Determine whether the series 1𝑛 converges or diverges.

  • AIt converges.
  • BIt diverges.

Q5:

Determine whether the series 1𝑛 converges or diverges.

  • AIt diverges.
  • BIt converges.

Q6:

Determine whether the series 1𝑛 converges or diverges.

  • AIt converges.
  • BIt diverges.

Q7:

Determine whether the series 𝑛𝑛 converges or diverges.

  • AIt diverges.
  • BIt converges.

Q8:

Determine whether the series 𝑛𝑛 converges or diverges.

  • AIt diverges.
  • BIt converges.

Q9:

Determine whether the series 1𝑛𝑛 converges or diverges.

  • AIt converges.
  • BIt diverges.

Q10:

State whether the given p-series 1𝑛𝑛 converges or diverges.

  • AIt converges.
  • BIt diverges.

Q11:

Use the 𝑝-series test to determine whether the series 4𝑛5𝑛is divergent or convergent.

  • AConvergent
  • BDivergent

Q12:

Use the 𝑝-series test to determine whether the series 𝑛𝑛 is divergent or convergent.

  • AConvergent
  • BDivergent

Q13:

Use the 𝑝-series test to determine whether the series 14𝑛 is divergent or convergent.

  • AConvergent
  • BDivergent

Q14:

Use the 𝑝-series test to determine whether the series 𝑛𝑛 is divergent or convergent.

  • AConvergent
  • BDivergent

Q15:

Use the 𝑝-series test to determine whether the series 7𝑛5𝑛 is divergent or convergent.

  • ADivergent
  • BConvergent

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.