Worksheet: Rotations on the Coordinate Plane

In this worksheet, we will practice finding the vertices of a shape after it undergoes a rotation of 90, 180, or 270 degrees about the origin clockwise and counterclockwise.

Q1:

Determine the images of the vertices of triangle 𝐴𝐡𝐢 after a clockwise rotation of 90∘ about the origin.

  • A 𝐴 β€² ( βˆ’ 4 , 8 ) , 𝐡 β€² ( βˆ’ 3 , 3 ) , 𝐢 β€² ( 7 , βˆ’ 3 )
  • B 𝐴 β€² ( 4 , βˆ’ 8 ) , 𝐡 β€² ( βˆ’ 3 , 3 ) , 𝐢 β€² ( βˆ’ 7 , 3 )
  • C 𝐴 β€² ( 4 , βˆ’ 8 ) , 𝐡 β€² ( 3 , βˆ’ 3 ) , 𝐢 β€² ( 7 , βˆ’ 3 )
  • D 𝐴 β€² ( βˆ’ 4 , 8 ) , 𝐡 β€² ( 3 , βˆ’ 3 ) , 𝐢 β€² ( βˆ’ 7 , 3 )
  • E 𝐴 β€² ( βˆ’ 4 , 8 ) , 𝐡 β€² ( βˆ’ 3 , 3 ) , 𝐢 β€² ( βˆ’ 7 , 3 )

Q2:

Given that 𝑋(4,βˆ’2), π‘Œ(8,βˆ’3), and 𝑍(5,βˆ’8) form a triangle, determine the images of its vertices after a clock wise rotation of 180∘ about the origin.

  • A 𝑋 β€² ( 2 , βˆ’ 4 ) , π‘Œ β€² ( 3 , βˆ’ 8 ) , 𝑍 β€² ( 8 , βˆ’ 5 )
  • B 𝑋 β€² ( βˆ’ 4 , 2 ) , π‘Œ β€² ( 3 , βˆ’ 8 ) , 𝑍 β€² ( βˆ’ 5 , 8 )
  • C 𝑋 β€² ( 2 , βˆ’ 4 ) , π‘Œ β€² ( βˆ’ 8 , 3 ) , 𝑍 β€² ( βˆ’ 5 , 8 )
  • D 𝑋 β€² ( βˆ’ 4 , 2 ) , π‘Œ β€² ( βˆ’ 8 , 3 ) , 𝑍 β€² ( 8 , βˆ’ 5 )
  • E 𝑋 β€² ( βˆ’ 4 , 2 ) , π‘Œ β€² ( βˆ’ 8 , 3 ) , 𝑍 β€² ( βˆ’ 5 , 8 )

Q3:

What is the image of the point (βˆ’3,14) after a rotation about the origin through an angle of 90∘?

  • A ( βˆ’ 3 , βˆ’ 1 4 )
  • B ( βˆ’ 1 4 , 3 )
  • C ( 3 , 1 4 )
  • D ( βˆ’ 1 4 , βˆ’ 3 )

Q4:

What is the image of 𝐴𝐡𝐢𝐷 under the transformation (π‘₯,𝑦)β†’(βˆ’π‘¦,π‘₯)?

  • A 𝐴 β€² ( 4 , βˆ’ 3 ) , 𝐡 β€² ( 5 , βˆ’ 3 ) , 𝐢 β€² ( 5 , βˆ’ 4 ) , 𝐷 β€² ( 4 , βˆ’ 5 )
  • B 𝐴 β€² ( βˆ’ 4 , 3 ) , 𝐡 β€² ( βˆ’ 5 , 3 ) , 𝐢 β€² ( βˆ’ 5 , 4 ) , 𝐷 β€² ( βˆ’ 4 , 5 )
  • C 𝐴 β€² ( 4 , 5 ) , 𝐡 β€² ( 5 , 5 ) , 𝐢 β€² ( 5 , 6 ) , 𝐷 β€² ( 4 , 7 )
  • D 𝐴 β€² ( 4 , 0 ) , 𝐡 β€² ( 5 , 0 ) , 𝐢 β€² ( 5 , 1 ) , 𝐷 β€² ( 4 , 2 )
  • E 𝐴 β€² ( βˆ’ 3 , 4 ) , 𝐡 β€² ( βˆ’ 3 , 5 ) , 𝐢 β€² ( βˆ’ 4 , 5 ) , 𝐷 β€² ( βˆ’ 5 , 4 )

Q5:

A triangle has its vertices at the points (2, 1), (3, 2) and (2, 4). The triangle is rotated 90∘ counterclockwise about the origin. At which of the following coordinates will the image have its vertices?

  • A ( βˆ’ 1 , 2 ) , ( βˆ’ 2 , 3 ) , and (βˆ’4,2)
  • B ( 1 , 2 ) , ( 2 , 3 ) , and (2,βˆ’4)
  • C ( βˆ’ 2 , 1 ) , ( βˆ’ 2 , 3 ) , and (4,βˆ’2)
  • D ( 2 , βˆ’ 1 ) , ( 3 , βˆ’ 2 ) , and (2,βˆ’4)
  • E ( βˆ’ 1 , 2 ) , ( 2 , 3 ) , and (2,βˆ’4)

Q6:

Rotate the given triangle about the origin 90∘ clockwise. Which of the following sets of coordinates will be the vertices of the image?

  • A ( 2 , 1 ) , ( 4 , 2 ) , and (2,5)
  • B ( 1 , 2 ) , ( 2 , 4 ) , and (5,2)
  • C ( βˆ’ 2 , 1 ) , ( βˆ’ 2 , 4 ) , and (βˆ’5,2)
  • D ( 1 , βˆ’ 2 ) , ( 4 , βˆ’ 2 ) , and (2,βˆ’5)
  • E ( 2 , βˆ’ 1 ) , ( 4 , βˆ’ 2 ) , and (2,βˆ’5)

Q7:

Determine the coordinates of the vertices’ images of triangle 𝐴𝐡𝐢 after a counterclockwise rotation of 180∘ around the origin.

  • A 𝐴 β€² ( 8 , βˆ’ 7 ) , 𝐡 β€² ( 3 , βˆ’ 7 ) , 𝐢 β€² ( 4 , βˆ’ 3 )
  • B 𝐴 β€² ( βˆ’ 7 , 8 ) , 𝐡 β€² ( βˆ’ 7 , 3 ) , 𝐢 β€² ( βˆ’ 3 , 4 )
  • C 𝐴 β€² ( 8 , βˆ’ 7 ) , 𝐡 β€² ( βˆ’ 7 , 3 ) , 𝐢 β€² ( 4 , βˆ’ 3 )
  • D 𝐴 β€² ( 8 , βˆ’ 7 ) , 𝐡 β€² ( 3 , βˆ’ 7 ) , 𝐢 β€² ( βˆ’ 3 , 4 )
  • E 𝐴 β€² ( βˆ’ 7 , 8 ) , 𝐡 β€² ( 3 , βˆ’ 7 ) , 𝐢 β€² ( 4 , βˆ’ 3 )

Q8:

Given that 𝑋(4,βˆ’4), π‘Œ(8,βˆ’5), and 𝑍(5,βˆ’6), form a triangle, determine the images of its vertices after a clockwise rotation of 90∘ about the origin.

  • A 𝑋 β€² ( βˆ’ 4 , βˆ’ 4 ) , π‘Œ β€² ( βˆ’ 5 , βˆ’ 8 ) , 𝑍 β€² ( 6 , 5 )
  • B 𝑋 β€² ( 4 , 4 ) , π‘Œ β€² ( βˆ’ 5 , βˆ’ 8 ) , 𝑍 β€² ( βˆ’ 6 , βˆ’ 5 )
  • C 𝑋 β€² ( βˆ’ 4 , βˆ’ 4 ) , π‘Œ β€² ( 5 , 8 ) , 𝑍 β€² ( βˆ’ 6 , βˆ’ 5 )
  • D 𝑋 β€² ( βˆ’ 4 , βˆ’ 4 ) , π‘Œ β€² ( βˆ’ 5 , βˆ’ 8 ) , 𝑍 β€² ( βˆ’ 6 , βˆ’ 5 )
  • E 𝑋 β€² ( 4 , 4 ) , π‘Œ β€² ( 5 , 8 ) , 𝑍 β€² ( 6 , 5 )

Q9:

Determine the coordinates of the vertices’ images of triangle 𝐴𝐡𝐢 after a counterclockwise rotation of 270∘ around the origin.

  • A 𝐴 β€² ( βˆ’ 3 , 7 ) , 𝐡 β€² ( 3 , βˆ’ 4 ) , 𝐢 β€² ( βˆ’ 5 , 6 )
  • B 𝐴 β€² ( βˆ’ 3 , 7 ) , 𝐡 β€² ( βˆ’ 4 , 3 ) , 𝐢 β€² ( 6 , βˆ’ 5 )
  • C 𝐴 β€² ( 7 , βˆ’ 3 ) , 𝐡 β€² ( βˆ’ 4 , 3 ) , 𝐢 β€² ( βˆ’ 5 , 6 )
  • D 𝐴 β€² ( 7 , βˆ’ 3 ) , 𝐡 β€² ( 3 , βˆ’ 4 ) , 𝐢 β€² ( 6 , βˆ’ 5 )
  • E 𝐴 β€² ( βˆ’ 3 , 7 ) , 𝐡 β€² ( βˆ’ 4 , 3 ) , 𝐢 β€² ( βˆ’ 5 , 6 )

Q10:

A triangle graphed on the coordinate plane has a vertex at (6,0). Which of the following rotations would move the vertex to point (0,6)?

  • A 9 0 ∘ clockwise around the origin
  • B 9 0 ∘ counterclockwise around the origin
  • C 1 8 0 ∘ clockwise or counterclockwise around the origin

Q11:

The point 𝐴(3,0) is rotated about the origin by πœƒ degrees. On which of the given figures will the image of 𝐴 lie?

  • Aa circle with radius three and center (0,0)
  • Ba circle with radius three and center (1,1)
  • Ca circle with radius three and center (3,3)
  • Da circle with radius three and center (3,0)
  • Ea circle with radius two and center (0,0)

Q12:

Two points 𝐴 and 𝐡 have coordinates (βˆ’5,1) and (βˆ’2,1) respectively. 𝐴𝐡 is rotated 270∘ counterclockwise to 𝐴′𝐡′.

Determine the coordinates of 𝐴′ and 𝐡′.

  • A 𝐴 β€² = ( 1 , βˆ’ 5 ) , 𝐡 β€² = ( 1 , βˆ’ 2 )
  • B 𝐴 β€² = ( 5 , 1 ) , 𝐡 β€² = ( 2 , 1 )
  • C 𝐴 β€² = ( 1 , 5 ) , 𝐡 β€² = ( 1 , 2 )
  • D 𝐴 β€² = ( βˆ’ 1 , βˆ’ 5 ) , 𝐡 β€² = ( βˆ’ 1 , βˆ’ 2 )
  • E 𝐴 β€² = ( βˆ’ 1 , 5 ) , 𝐡 β€² = ( βˆ’ 1 , 2 )

Is the length of 𝐴𝐡 greater than, less than, or equal to the length of 𝐴′𝐡′?

  • Aequal to
  • Bgreater than
  • Cless than

Q13:

Describe the single transformation that would map triangle 𝐴𝐡𝐢 onto triangle 𝐴′𝐡′𝐢′ in the given figure.

  • Aa rotation of 270∘ counterclockwise about 𝐷
  • Ba rotation of 270∘ clockwise about 𝐸
  • Ca rotation of 90∘ clockwise about 𝐸
  • Da rotation of 90∘ clockwise about 𝐷
  • Ea rotation of 90∘ counterclockwise about 𝐷

Q14:

A triangle has vertices at the points seen in the figure. Rotate the triangle 90∘ counterclockwise about the origin, and determine the coordinates of the image.

  • A ( 3 , βˆ’ 2 ) , ( 5 , βˆ’ 1 ) , ( 5 , βˆ’ 4 )
  • B ( βˆ’ 3 , 2 ) , ( βˆ’ 5 , 1 ) , ( βˆ’ 5 , 4 )
  • C ( βˆ’ 3 , βˆ’ 2 ) , ( βˆ’ 5 , βˆ’ 1 ) , ( βˆ’ 5 , βˆ’ 4 )
  • D ( βˆ’ 2 , βˆ’ 3 ) , ( βˆ’ 4 , βˆ’ 5 ) , ( βˆ’ 1 , βˆ’ 5 )
  • E ( 3 , 2 ) , ( 5 , 1 ) , ( 5 , 4 )

Q15:

Rotate triangle 𝐴𝐡𝐢180∘ clockwise about the origin, and state the coordinates of the image.

  • A ( 2 , 0 ) , ( 1 , βˆ’ 2 ) , ( 1 , 3 )
  • B ( βˆ’ 2 , 0 ) , ( 1 , βˆ’ 2 ) , ( 1 , βˆ’ 3 )
  • C ( 0 , 2 ) , ( βˆ’ 2 , βˆ’ 1 ) , ( 3 , βˆ’ 1 )
  • D ( βˆ’ 2 , 0 ) , ( 1 , 2 ) , ( 1 , βˆ’ 3 )
  • E ( 2 , 0 ) , ( βˆ’ 1 , βˆ’ 2 ) , ( βˆ’ 1 , 3 )

Q16:

Rotate triangle 𝐴𝐡𝐢90∘ clockwise about the origin, and state the coordinates of the image of vertices.

  • A ( 2 , βˆ’ 5 ) , ( 4 , βˆ’ 3 ) , ( 0 , βˆ’ 2 )
  • B ( βˆ’ 5 , 2 ) , ( βˆ’ 3 , 4 ) , ( βˆ’ 2 , 0 )
  • C ( 2 , 5 ) , ( 4 , 3 ) , ( 0 , 2 )
  • D ( βˆ’ 2 , 5 ) , ( βˆ’ 4 , 3 ) , ( 0 , 2 )
  • E ( βˆ’ 2 , βˆ’ 5 ) , ( βˆ’ 4 , βˆ’ 3 ) , ( βˆ’ 2 , 0 )

Q17:

βƒ–     βƒ— 𝐴 𝐡 and ⃖⃗𝐢𝐷 are parallel. Both have been rotated 90∘ clockwise about the point 𝐸 to ⃖⃗𝐴′𝐡′ and ⃖⃗𝐢′𝐷′ respectively. What do you notice about ⃖⃗𝐴′𝐡′ and ⃖⃗𝐢′𝐷′?

  • AThey are parallel.
  • BThey are intersecting.
  • CThey are perpendicular.

Q18:

In the given figure, a rotation of 90∘ counterclockwise about the point 𝐡′ would map triangle 𝐴𝐡′𝐢 to triangle 𝐴′𝐡′𝐢′. Does it follow that the two triangles are congruent?

  • Ano
  • Byes

Q19:

A rotation about 𝑋 takes 𝑍 to 𝑍′ and π‘Œ to π‘Œβ€². What is the angle of rotation? If 𝑋𝑍=45, what is 𝑋𝑍′?

  • A 9 0 ∘ , 90
  • B 5 3 ∘ , 45
  • C 3 7 ∘ , 45
  • D 1 2 7 ∘ , 45

Q20:

In the given figure, if 𝑀 is the midpoint of 𝐴𝐡, then 𝑏 can be rotated 180∘ about 𝑀 to π‘Ž. Hence, π‘Ž and 𝑏 must be congruent. Is this statement true or false?

  • Afalse
  • Btrue

Q21:

The vertices of △𝐴𝐡𝐢 are 𝐴(5,βˆ’9), 𝐡(8,βˆ’1), and 𝐢(βˆ’2,βˆ’3). Determine the vertices of △𝐴′𝐡′𝐢′, the image of △𝐴𝐡𝐢 after a rotation through 180∘ about the origin.

  • A 𝐴 β€² ( 9 , βˆ’ 5 ) , 𝐡 β€² ( 1 , βˆ’ 8 ) , 𝐢 β€² ( 3 , 2 )
  • B 𝐴 β€² ( βˆ’ 5 , βˆ’ 9 ) , 𝐡 β€² ( βˆ’ 8 , βˆ’ 1 ) , 𝐢 β€² ( 2 , βˆ’ 3 )
  • C 𝐴 β€² ( 5 , 9 ) , 𝐡 β€² ( 8 , 1 ) , 𝐢 β€² ( βˆ’ 2 , 3 )
  • D 𝐴 β€² ( βˆ’ 5 , 9 ) , 𝐡 β€² ( βˆ’ 8 , 1 ) , 𝐢 β€² ( 2 , 3 )

Q22:

Isabella went on a hike in the woods. She was walking southwest along a trail. When she got to a fork in the trail, she started walking southeast. Fully describe the rotation she made at the fork in the trail.

  • ARotation by 90∘ counterclockwise
  • BRotation by 45∘ counterclockwise
  • CRotation by 180∘ clockwise
  • DRotation by 90∘ clockwise
  • ERotation by 45∘ clockwise

Q23:

The point (π‘Ž,𝑏) is the image of the point (π‘₯,𝑦) after a anticlockwise rotation of 90∘ about the origin. Find π‘Ž+𝑦 and 𝑏+π‘₯.

  • A π‘Ž + 𝑦 = 2 π‘₯ , 𝑏 + π‘₯ = 0
  • B π‘Ž + 𝑦 = 0 , 𝑏 + π‘₯ = 2 π‘₯
  • C π‘Ž + 𝑦 = 2 𝑦 , 𝑏 + π‘₯ = 0
  • D π‘Ž + 𝑦 = 0 , 𝑏 + π‘₯ = 0

Q24:

In the figure, ⃖⃗𝐴𝐡 has been rotated about the origin by 180∘. Is the image a point, a line segment, or a line?

  • Aa point
  • Ba line segment
  • Ca line

Q25:

Points 𝐴 and 𝐡 have coordinates (βˆ’2,5) and (3,5) respectively.

What is the length of 𝐴𝐡?

A rotation of 90∘ clockwise about the origin maps the points 𝐴 and 𝐡 to the points 𝐴′ and 𝐡′ respectively. What are the coordinates of 𝐴′ and 𝐡′?

  • A 𝐴 β€² = ( 5 , 2 ) , 𝐡 β€² = ( 5 , βˆ’ 3 )
  • B 𝐴 β€² = ( βˆ’ 5 , βˆ’ 2 ) , 𝐡 β€² = ( βˆ’ 5 , 3 )
  • C 𝐴 β€² = ( 2 , 5 ) , 𝐡 β€² = ( βˆ’ 3 , 5 )
  • D 𝐴 β€² = ( βˆ’ 5 , 2 ) , 𝐡 β€² = ( βˆ’ 5 , βˆ’ 3 )
  • E 𝐴 β€² = ( 5 , βˆ’ 2 ) , 𝐡 β€² = ( 5 , 3 )

What is the length of 𝐴′𝐡′?

Hence, does the length of 𝐴𝐡 decrease, increase, or stay the same as a result of this rotation?

  • AIt decreases.
  • BIt stays the same.
  • CIt increases.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.