The portal has been deactivated. Please contact your portal admin.

Lesson Worksheet: Convexity and Points of Inflection Mathematics • Higher Education

In this worksheet, we will practice determining the convexity of a function as well as its inflection points using its second derivative.

Q1:

Determine the intervals on which the function 𝑓(π‘₯)=βˆ’4π‘₯+π‘₯ is concave up and down.

  • AThe function is concave up on ο€Ώβˆ’βˆš3020,0 and ο€Ώ0,√3020 and concave down on ο€Ώβˆ’βˆž,βˆ’βˆš3020 and ο€Ώβˆš3020,βˆžο‹ .
  • BThe function is concave up on ο€Ώβˆ’βˆž,βˆ’βˆš3020 and ο€Ώ0,√3020 and concave down on ο€Ώβˆ’βˆš3020,0 and ο€Ώβˆš3020,βˆžο‹.
  • CThe function is concave up on ο€Ώβˆ’βˆš3020,0 and ο€Ώβˆš3020,βˆžο‹ and concave down on ο€Ώβˆ’βˆž,βˆ’βˆš3020 and ο€Ώ0,√3020.
  • DThe function is concave up on ο€Ώ0,√3020 and ο€Ώβˆš3020,βˆžο‹ and concave down on ο€Ώβˆ’βˆž,βˆ’βˆš3020 and ο€Ώβˆ’βˆš3020,0.
  • EThe function is concave up on ο€Ώβˆ’βˆž,βˆ’βˆš3020 and ο€Ώβˆ’βˆš3020,0 and concave down on ο€Ώ0,√3020 and ο€Ώβˆš3020,βˆžο‹ .

Q2:

Use the given graph of 𝑓 to find the coordinates of the points of inflection.

  • A(4,5)
  • B(1,3), (5,4)
  • C(5,4)
  • D(2,2), (4,3), (5,4)
  • E(1,3), (4,3), (5,4)

Q3:

Determine the inflection points of the curve 𝑦=π‘₯+2π‘₯βˆ’5.

  • A(0,2)
  • B(2,3)
  • Chas no inflection points
  • D(βˆ’1,1)

Q4:

Find the inflection point on the graph of 𝑓(π‘₯)=π‘₯βˆ’9π‘₯+6π‘₯.

  • A(3,βˆ’36)
  • B(3,βˆ’21)
  • C(3,0)
  • Dno inflection point

Q5:

The figure shows the graph of 𝑓(π‘₯)=βˆ’π΄π‘₯+𝐡π‘₯ for positive constants 𝐴,𝐡.

Find the exact values of the constants if the local minimum value shown is βˆ’1 and the inflection point 𝑃 occurs when π‘₯=2.

  • A𝐴=βˆ’49, 𝐡=βˆ’49
  • B𝐴=32, 𝐡=32
  • C𝐴=274, 𝐡=274
  • D𝐴=βˆ’94, 𝐡=βˆ’94
  • E𝐴=427, 𝐡=427

Q6:

Determine the intervals on which 𝑓(π‘₯)=βˆ’4π‘₯+(π‘₯+3)βˆ’4 is concave up and down.

  • AThe function is concave down on the interval (βˆ’βˆž,1) and up on the interval (βˆ’4,∞).
  • BThe function is concave down on the interval (βˆ’βˆž,3) and up on the interval (3,∞).
  • CThe function is concave down on the interval (βˆ’βˆž,βˆ’3) and up on the interval (βˆ’3,∞).
  • DThe function is concave down on the interval (βˆ’3,∞) and up on the interval (βˆ’βˆž,βˆ’3).
  • EThe function is concave down on the interval (βˆ’4,∞) and up on the interval (βˆ’βˆž,1).

Q7:

Using the given graph of the function 𝑓, at what values of π‘₯ does 𝑓 have inflection points?

  • A𝑓 has inflection points when π‘₯=1 and π‘₯=7.
  • B𝑓 has inflection points when π‘₯=2, π‘₯=4, and π‘₯=6.
  • C𝑓 has inflection points when π‘₯=3 and π‘₯=5.
  • D𝑓 has inflection points when π‘₯=2 and π‘₯=6.
  • E𝑓 has inflection points when π‘₯=4 and π‘₯=6.

Q8:

Given that 𝑓(π‘₯)=4π‘₯+4π‘₯sincos, where 0≀π‘₯β‰€πœ‹2, determine the inflection points of 𝑓.

  • A𝑓 has inflection points at ο€Ό3πœ‹16,√2 and ο€Ό7πœ‹16,βˆ’βˆš2.
  • B𝑓 has inflection points at ο€Ό3πœ‹16,√2 and ο€Ό7πœ‹16,√2.
  • C𝑓 has inflection points at ο€Ό3πœ‹16,0 and ο€Ό7πœ‹16,0.
  • D𝑓 has inflection points at ο€»πœ‹16,√2 and ο€Ό5πœ‹16,βˆ’βˆš2.
  • E𝑓 has inflection points at ο€»πœ‹16,0 and ο€Ό5πœ‹16,0.

Q9:

Find (if any) the inflection points of 𝑓(π‘₯)=3π‘₯2π‘₯ln.

  • A𝑓 has an inflection point at 𝑒2,98π‘’οοŠ±οŠ©οŽ’οŽ‘.
  • B𝑓 has no inflection points.
  • C𝑓 has an inflection point at 𝑒2,βˆ’98π‘’οοŠ±οŠ©οŽ’οŽ‘.
  • D𝑓 has an inflection point at ο€Ώ12βˆšπ‘’,βˆ’38𝑒.
  • E𝑓 has an inflection point at ο€Ώ12βˆšπ‘’,38𝑒.

Q10:

Consider the parameric curve π‘₯=πœƒcos and 𝑦=πœƒsin. Determine whether this curve is concave up, down, or neither at πœƒ=πœ‹6.

  • Aupward
  • Bdownward
  • Cneither

This lesson includes 90 additional questions and 543 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.