Lesson Worksheet: Critical Points and Local Extrema of a Function Mathematics • Higher Education

In this worksheet, we will practice finding critical points of a function and checking for local extrema using the first derivative test.

Q1:

Determine the number of critical points of the following graph.

Q2:

Determine the critical points of the function 𝑦=βˆ’8π‘₯ in the interval [βˆ’2,1].

  • A(0,0), (1,βˆ’8)
  • B(0,0)
  • C(0,0), (1,βˆ’24)
  • D(βˆ’2,64), (1,βˆ’8)
  • E(βˆ’2,64)

Q3:

Which graph has three real zeros and two local maxima?

  • A()b
  • B()a
  • C()c

Q4:

Determine, if any, the local maximum and minimum values of 𝑓(π‘₯)=βˆ’2π‘₯βˆ’9π‘₯βˆ’12π‘₯βˆ’15, together with where they occur.

  • AThe local maximum is βˆ’38 at π‘₯=1, and there is no local minimum.
  • BThe local maximum is βˆ’10 at π‘₯=βˆ’1, and the local minimum is βˆ’11 at π‘₯=βˆ’2.
  • CThe local minimum is βˆ’15 at π‘₯=0, and there is no local maximum.
  • DThe local minimum is βˆ’2 at π‘₯=βˆ’14, and the local maximum is βˆ’15 at π‘₯=29.

Q5:

Determine where the local maxima and minima are for 𝑓(π‘₯)=π‘₯4βˆ’2π‘₯+5οŠͺ.

  • Alocal maxima at π‘₯=0, local minima at π‘₯=4 and π‘₯=βˆ’4
  • Blocal maxima at π‘₯=2 and π‘₯=βˆ’2, local minima at π‘₯=0
  • Clocal maxima at π‘₯=0, local minima at π‘₯=2 and π‘₯=βˆ’2
  • Dlocal maxima at π‘₯=4 and π‘₯=βˆ’4, local minima at π‘₯=0
  • Elocal maxima at π‘₯=2 and π‘₯=0, local minima at π‘₯=βˆ’2

Q6:

Find the critical points of 𝑓(π‘₯)=π‘₯(π‘₯βˆ’1).

  • AThe function has critical points at π‘₯=0, π‘₯=βˆ’25, and π‘₯=βˆ’1.
  • BThe function has critical points at π‘₯=0, π‘₯=1, and π‘₯=13.
  • CThe function has no critical points.
  • DThe function has critical points at π‘₯=0, π‘₯=25, and π‘₯=1.
  • EThe function has critical points at π‘₯=0, π‘₯=βˆ’1, and π‘₯=βˆ’13.

Q7:

The graph of the first derivative 𝑓′ of a continuous function 𝑓 is shown. At what values of π‘₯ does 𝑓 have a local maximum and a local minimum?

  • A𝑓 has local maximum points at π‘₯=1 and π‘₯=8 and a local minimum point at π‘₯=6.
  • B𝑓 has local maximum points at π‘₯=2 and π‘₯=5 and local minimum points at π‘₯=3 and π‘₯=7.
  • C𝑓 has a local maximum point at π‘₯=6 and local minimum points at π‘₯=1 and π‘₯=8.
  • D𝑓 has local maximum points at π‘₯=3 and π‘₯=5 and a local minimum point at π‘₯=7.
  • E𝑓 has local maximum points at π‘₯=3 and π‘₯=7 and local minimum points at π‘₯=2 and π‘₯=5.

Q8:

Find, if any, the local maxima and minima for 𝑓(π‘₯)=3π‘₯βˆ’2π‘₯βˆ’4π‘₯ln.

  • ALocal maximum equals 1 at π‘₯=1.
  • BLocal minimum equals βˆ’4ο€Ό23ln at π‘₯=23.
  • CIt has no local maxima and no local minima.
  • DLocal minimum equals 1 at π‘₯=1.
  • ELocal maximum equals βˆ’4ο€Ό23ln at π‘₯=23.

Q9:

Given that the function 𝑓(π‘₯)=π‘₯+𝐿π‘₯+π‘€οŠ¨ has a minimum value of 2 at π‘₯=βˆ’1, determine the values of 𝐿 and 𝑀.

  • A𝐿=βˆ’4, 𝑀=βˆ’3
  • B𝐿=2, 𝑀=3
  • C𝐿=1, 𝑀=2
  • D𝐿=βˆ’2, 𝑀=βˆ’1

Q10:

Determine where 𝑓(π‘₯)=3π‘₯π‘’οŠ¨οŠ±ο— has a local maximum, and give the value there.

  • Aπ‘₯=12,34βˆšπ‘’.
  • Bπ‘₯=βˆ’2,12π‘’οŠ¨.
  • Cπ‘₯=23,43π‘’οŽ‘οŽ’.
  • Dπ‘₯=βˆ’12,3βˆšπ‘’4.
  • Eπ‘₯=2,12π‘’οŠ¨.

This lesson includes 54 additional questions and 406 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.