# Worksheet: Roots of Cubic Functions

In this worksheet, we will practice finding the roots of cubic functions with integer coefficients.

Q1:

Find the set of zeros of the function .

• A
• B
• C
• D

Q2:

Find the set of zeros of the function .

• A
• B
• C
• D
• E

Q3:

Find the value of , given the set contains the zero of the function .

Q4:

Solve the equation .

• A, ,
• B, ,
• C, ,
• D, ,
• E, ,

Q5:

Solve the equation .

• A, ,
• B, ,
• C, ,
• D, ,
• E, ,

Q6:

Determine the solution set of the equation in .

• A
• B
• C
• D
• E

Q7:

Solve .

• A
• B
• C
• D or
• E or

Q8:

Solve .

• A
• B or
• C
• D
• E or

Q9:

Find the solution set of in .

• A
• B
• C
• D
• E

Q10:

Find the set of zeros of the function .

• A
• B
• C
• D
• E

Q11:

Find the set of zeros of the function .

• A
• B
• C
• D
• E

Q12:

Find the set of zeros of the function .

• A
• B
• C
• D
• E

Q13:

Find the set of zeros of the function .

• A
• B
• C
• D
• E

Q14:

Find the set of zeros of the function .

• A
• B
• C
• D
• E

Q15:

The figure shows the curve together with the line which has slope and passes through point . Write a cubic polynomial whose roots are , , and 1.

• A
• B
• C
• D
• E

Divide this polynomial by to get a quadratic that is a multiple of .

• A
• B
• C
• D
• E

Since , determine in terms of .

• A
• B
• C
• D
• E

Imagine changing the value of the slope so that the value of gets closer and closer to 1. When , the line will be tangent to the curve at the point . Determine the equation of the tangent to the curve at the point .

• A
• B
• C
• D
• E