Lesson Worksheet: Solving a Trigonometric Equation Mathematics

In this worksheet, we will practice solving a trigonometric equation using factoring or squaring.

Q1:

Find the set of values satisfying 4𝜃1=0cos given that 0<𝜃<180.

  • A{240,300}
  • B{120,240}
  • C{60,120}
  • D{60,300}
  • E{30,150}

Q2:

If 0𝑥90, how many solutions are there of the equation 3𝑥=𝑥sintan?

Q3:

How many solutions are there of the equation 3𝑥𝑥=𝑥sincossin if 0𝑥90?

Q4:

Fill in the blank: If 0𝑥360, then the number of solutions of the equation 4𝑥=𝑥sintan is .

Q5:

Find the set of values satisfying tantan𝜃+𝜃=0 where 0𝜃<360.

  • A{135,45,90,270}
  • B{135,315,0,180}
  • C{45,135,0,90}
  • D{135,225,0,180}

Q6:

Find the set of values satisfying 22𝜃+2𝜃=0coscos given 0<𝜃360.

  • A{45,90,270,315}
  • B{0,45,135,180}
  • C{0,135,180,225}
  • D{90,135,225,270}

Q7:

Find the set of values satisfying 3𝜃2𝜃𝜃=0sinsincos where 0𝜃<360. Give the answer to the nearest minute.

  • A{0,3341,180,14619}
  • B{0,14619,180,32619}
  • C{0,3341,180,21341}
  • D{0,14619,180,21341}

Q8:

By first squaring both sides, or otherwise, solve the equation 4𝜃4𝜃=3sincos, where 0<𝜃360. Be careful to remove any extraneous solutions. Give your answers to two decimal places.

  • A𝜃=86.14,212.57
  • B𝜃=65.18,205.14
  • C𝜃=47.35,195.12
  • D𝜃=77.24,210.57
  • E𝜃=62.83,207.17

Q9:

Find all the possible general solutions of 2𝜃2𝜃=0coscos.

  • A𝜋2+𝑛𝜋,𝜋2+𝑛𝜋,𝜋4+2𝑛𝜋,𝜋4+2𝑛𝜋𝑛:.
  • B𝜋2+2𝑛𝜋,𝜋2+2𝑛𝜋,𝜋4+2𝑛𝜋,𝜋4+2𝑛𝜋𝑛:.
  • C𝜋2+𝑛𝜋,𝜋4+2𝑛𝜋𝑛:.
  • D𝜋2+𝑛𝜋,𝜋4+2𝑛𝜋𝑛:.
  • E𝜋2+𝑛𝜋,𝜋4+2𝑛𝜋𝑛:.

Q10:

Find all the possible solutions, that is, the general solution, of the equation sincossin𝜃𝜃=22𝜃.

  • A±𝜋4+2𝑛𝜋 (where 𝑛)
  • B𝑛𝜋, 𝜋2+2𝑛𝜋 (where 𝑛)
  • C𝑛𝜋, 𝜋4+2𝑛𝜋 (where 𝑛)
  • D𝑛𝜋, ±𝜋4+2𝑛𝜋 (where 𝑛)
  • E𝑛𝜋, ±𝜋2+2𝑛𝜋 (where 𝑛)

This lesson includes 19 additional questions and 187 additional question variations for subscribers.

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy.